$\sqrt{s_{NN}} = 200 \text{GeV} の$ Au+Au 衝突における衝突初期形状の eccentricity の核子の内部構造依存性の研究

> 奈良女子大学理学部 数物化学科物理学コース 高エネルギー物理学研究室 渡部 舞

概要

現在の宇宙では、クォークとグルーオンは核子の中に閉じ込められてい るが、ビッグバン直後の約2兆度以上の初期宇宙では、クォークとグルー オンが閉じ込めから解放されたクォーク・グルーオン・プラズマ(QGP) 状態であったと考えられている。この QGP について調べることで宇宙の 成り立ちを知ることができると考えられている。

Brookhaven National Laboratory (BNL)の The Relativistic Heavy Ion Collider (RHIC) は核子対あたり200 GeVの重心系衝突エネルギー で金原子核同士を衝突させることで高温高圧状態を作り、QGP を再現す ることを可能にした。RHIC を用いて PHENIX 実験が行われており、そ の中で方位角異方性は QGP の重要な性質の一つである。その方位角異方 性を表す v_2 があり、 v_2 と eccentricity の関係を調べることで QGP の性質 の一つを解明できると考えられている。本研究では v_2 と相関があるとい われている楕円率 (eccentricity) に核子の内部構造が与える影響をシミュ レーションを用いて調べた。

本研究では participant eccentricity を用いる。 participant eccentricity とは、原子核同士が非中心衝突したときに衝突方向に対して垂直方向の反 応領域に注目した量である。反応領域内の衝突に関与した核子を衝突方向 に対して垂直方向に投影すると楕円型になる。投影された衝突に関与し たパートンからもっともらしい軸を新たに作り、その軸を基準に計算した 楕円率が participant eccentricity である。v2 とは原子核の非中心衝突に より放出される粒子群が示す方位角異方性のことで、放出粒子の反応平 面からの方位角分布をフーリエ変換した際の2次の項の係数である。方 位角異方性は PHENIX 実験のデータから計算式より求められる量だが、 participant eccentricity は実験で直接測定することはできない。そのため 乱数によりパートンを核子内に発生させ、疑似原子核を作り、衝突させ るシミュレーションで得た結果から計算する。participant eccentricityを 中心衝突度 (centrality) 毎に分けて内部構造による影響を調べた。ここで centrality は2つの原子核がどの程度重なって衝突するかを示す量であり、 衝突する原子核のそれぞれの中心の軌道間の距離b(インパクトパラメー タ)が0のとき、完全中心衝突で centrality は0%、bが原子核の直径よ り大きいとき衝突は起きず、centrality は 100%となる。

目 次

第1章	序章	7
1.1	クォーク・グルーオン・プラズマ (QGP)	7
1.2	高エネルギー重イオン衝突実験	8
	1.2.1 RHIC 加速器	8
	1.2.2 PHENIX 実験	10
1.3	物理量の定義・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	10
	1.3.1 centrality(中心衝突度)	10
	1.3.2 反応平面	10
	1.3.3 Npart,Npart_quark	11
	1.3.4 Ncoll_Ncoll_quark	11
1.4	楕円率 (eccentricity)	11
1.5	· · · · · · · · · · · · · · · · · · ·	13
第2章	解析	14
2.1	シミュレーション解析の手順.............	14
	2.1.1 核子作成	14
	2.1.2 核子やパートンの衝突	16
2.2	内部構造による Npart の変化	16
2.3	s シミュレーションの正当性	17
体。并	<i>/</i> + B	•
弗 3 草	結果 	20
3.1	内部構造の影響の有無	20
3.2	Ncoll_quark と eccentricity の関係	21
	3.2.1 Npart のみを固定した場合の Ncoll_quark と eccen-	
	tricityの関係	21
	3.2.2 核子と Npart を固定した場合の Ncoll_quark と ec-	
	centricityの関係	23
3.3	Npart_quark と eccentricity の関係	27
	3.3.1 Npart を固定した場合の内部構造の影響	27
	3.3.2 核子と Npart を固定した場合の Npart_quark と ec-	
	centricity の関係	29
3.4	パートンの数に依る内部構造の影響...........	32

	3.4.1 パートン5個と3個の比較	32
	3.4.2 パートン10個と3個の比較	35
3.5	まとめ	38
第4章	:	39
4.1	謝辞	39

4

図目次

1.1	宇宙創生の流れ	7
1.2	クォークとグルーオンの閉じ込めの破れ	8
1.3	原子核衝突の時間発展	9
1.4	RHIC 加速器	9
1.5	centrality	10
1.6	反応平面	11
1.7	eccentricity	12
1.8	centrality と eccentricity の関係	13
2.1	Woods-Saxson 型の核子密度分布	15
2.2	核子の大きさを考慮した原子核モデル.........	15
2.3	衝突反応断面積	16
2.4	パートンによる Npart	17
2.5	centrality vs Npart \ldots	18
2.6	centrality vs participant eccentricity	19
3.1	内部構造による eccentricity への影響	20
$3.1 \\ 3.2$	内部構造による eccentricity への影響 Npart=180 の時の Ncoll_quark vs participant eccentricity	$\frac{20}{22}$
$3.1 \\ 3.2 \\ 3.3$	内部構造による eccentricity への影響 Npart=180 の時の Ncoll_quark vs participant eccentricity Npart=102 の時の Ncoll_quark vs participant eccentricity	20 22 22
3.1 3.2 3.3 3.4	内部構造による eccentricity への影響 Npart=180 の時の Ncoll_quark vs participant eccentricity Npart=102 の時の Ncoll_quark vs participant eccentricity Npart=43 の時の Ncoll_quark vs participant eccentricity .	20 22 22 22
3.1 3.2 3.3 3.4 3.5	内部構造による eccentricity への影響 Npart=180 の時の Ncoll_quark vs participant eccentricity Npart=102 の時の Ncoll_quark vs participant eccentricity Npart=43 の時の Ncoll_quark vs participant eccentricity . Npart の固定	 20 22 22 22 22 24
3.1 3.2 3.3 3.4 3.5 3.6	内部構造による eccentricity への影響 Npart=180 の時の Ncoll_quark vs participant eccentricity Npart=102 の時の Ncoll_quark vs participant eccentricity Npart=43 の時の Ncoll_quark vs participant eccentricity . Npart の固定 Npart=180 の時の Ncoll_quark vs participant eccentricity	 20 22 22 22 24 25
3.1 3.2 3.3 3.4 3.5 3.6 3.7	内部構造による eccentricity への影響 Npart=180 の時の Ncoll_quark vs participant eccentricity Npart=102 の時の Ncoll_quark vs participant eccentricity Npart=43 の時の Ncoll_quark vs participant eccentricity . Npart の固定 Npart=180 の時の Ncoll_quark vs participant eccentricity Npart=102 の時の Ncoll_quark vs participant eccentricity	 20 22 22 22 24 25 25
 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 	内部構造による eccentricity への影響 Npart=180 の時の Ncoll_quark vs participant eccentricity Npart=102 の時の Ncoll_quark vs participant eccentricity Npart=43 の時の Ncoll_quark vs participant eccentricity . Npart の固定 Npart=180 の時の Ncoll_quark vs participant eccentricity Npart=102 の時の Ncoll_quark vs participant eccentricity Npart=43 の時の Ncoll_quark vs participant eccentricity .	 20 22 22 22 24 25 25
 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 	内部構造による eccentricity への影響 Npart=180 の時の Ncoll_quark vs participant eccentricity Npart=102 の時の Ncoll_quark vs participant eccentricity Npart=43 の時の Ncoll_quark vs participant eccentricity . Npart の固定 Npart=180 の時の Ncoll_quark vs participant eccentricity Npart=102 の時の Ncoll_quark vs participant eccentricity Npart=43 の時の Ncoll_quark vs participant eccentricity . Npart=43 の時の Ncoll_quark vs participant eccentricity . Npart=180 の時の Ncoll_quark vs participant eccentricity .	20 22 22 24 25 25 25 26
3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 3.10	内部構造による eccentricity への影響 Npart=180 の時の Ncoll_quark vs participant eccentricity Npart=102 の時の Ncoll_quark vs participant eccentricity Npart=43 の時の Ncoll_quark vs participant eccentricity . Npart の固定 Npart=180 の時の Ncoll_quark vs participant eccentricity Npart=102 の時の Ncoll_quark vs participant eccentricity Npart=43 の時の Ncoll_quark vs participant eccentricity . Npart=43 の時の Ncoll_quark vs participant eccentricity . Npart=180 の時の Ncoll_quark vs participant eccentricity . Npart=180 の時の Ncoll_quark vs participant eccentricity . Npart=102 の時の Ncoll_quark vs participant eccentricity .	20 22 22 24 25 25 25 26 26
3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 3.10 3.11	内部構造による eccentricity への影響 Npart=180 の時の Ncoll_quark vs participant eccentricity Npart=102 の時の Ncoll_quark vs participant eccentricity Npart=43 の時の Ncoll_quark vs participant eccentricity . Npartの固定 Npart=180 の時の Ncoll_quark vs participant eccentricity Npart=102 の時の Ncoll_quark vs participant eccentricity Npart=43 の時の Ncoll_quark vs participant eccentricity . Npart=180 の時の Ncoll_quark vs participant eccentricity . Npart=180 の時の Ncoll_quark vs participant eccentricity . Npart=102 の時の Ncoll_quark vs participant eccentricity . Npart=102 の時の Ncoll_quark vs participant eccentricity . Npart=102 の時の Ncoll_quark vs participant eccentricity .	20 22 22 24 25 25 25 26 26 26 27
3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 3.10 3.11 3.12	内部構造による eccentricity への影響 Npart=180 の時の Ncoll_quark vs participant eccentricity Npart=102 の時の Ncoll_quark vs participant eccentricity Npart=43 の時の Ncoll_quark vs participant eccentricity . Npart の固定 Npart=180 の時の Ncoll_quark vs participant eccentricity Npart=102 の時の Ncoll_quark vs participant eccentricity Npart=43 の時の Ncoll_quark vs participant eccentricity . Npart=43 の時の Ncoll_quark vs participant eccentricity . Npart=102 の時の Ncoll_quark vs participant eccentricity . Npart=43 の時の Ncoll_quark vs participant eccentricity . Npart=43 の時の Ncoll_quark vs participant eccentricity .	20 22 22 24 25 25 25 25 26 26 26 27 28
3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 3.10 3.11 3.12 3.13	内部構造による eccentricity への影響 Npart=180 の時の Ncoll_quark vs participant eccentricity Npart=102 の時の Ncoll_quark vs participant eccentricity Npart=43 の時の Ncoll_quark vs participant eccentricity . Npart の固定 Npart=180 の時の Ncoll_quark vs participant eccentricity Npart=102 の時の Ncoll_quark vs participant eccentricity Npart=43 の時の Ncoll_quark vs participant eccentricity . Npart=180 の時の Ncoll_quark vs participant eccentricity . Npart=102 の時の Ncoll_quark vs participant eccentricity . Npart=180 の時の Ncoll_quark vs participant eccentricity . Npart=180 の時の Npart_quark vs participant eccentricity . Npart=102 の時の Npart_quark vs participant eccentricity .	20 22 22 24 25 25 25 26 26 26 27 28 28
3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 3.10 3.11 3.12 3.13 3.14	内部構造による eccentricity への影響 Npart=180 の時の Ncoll_quark vs participant eccentricity Npart=102 の時の Ncoll_quark vs participant eccentricity Npart=43 の時の Ncoll_quark vs participant eccentricity Npart の固定 Npart=180 の時の Ncoll_quark vs participant eccentricity Npart=102 の時の Ncoll_quark vs participant eccentricity Npart=43 の時の Ncoll_quark vs participant eccentricity Npart=102 の時の Ncoll_quark vs participant eccentricity Npart=43 の時の Ncoll_quark vs participant eccentricity Npart=180 の時の Npart_quark vs participant eccentricity Npart=102 の時の Npart_quark vs participant eccentricity Npart=102 の時の Npart_quark vs participant eccentricity Npart=43 の時の Npart_quark vs participant eccentricity	20 22 22 24 25 25 26 26 26 27 28 28 28 28

3.16 Npart—102の時のNpart quark vs participant eccentricity	20
5.10 Typart=102 ON O Typart_quark vs participant eccentricity	23
3.17 Npart=43 の時の Npart_quark vs participant eccentricity .	30
3.18 Npart=180 の時の Npart_quark vs participant eccentricity	31
3.19 Npart=102 の時の Npart_quark vs participant eccentricity	31
3.20 Npart=43 の時の Npart_quark vs participant eccentricity .	31
3.21 パートン3個と5個の比較	33
3.22 パートン 3 個と 10 個の比較	36

第1章 序章

1.1 クォーク・グルーオン・プラズマ (QGP)

クォーク・グルーオン・プラズマ(QGP)とは、クォークとグルーオ ンが核子の閉じ込めから解放された超高温物質である。約 138 億年前の 宇宙誕生直後、温度は約 2 兆度以上で QGP 状態にあったと考えられてい る。図 1.1 は、ビッグバンからの宇宙創生の流れを表している。量子色力 学(QCD)で記述されるように、クォークとグルーオンは核子内に閉じ 込められているが、重い原子核を高エネルギーで衝突させることで高温 高圧状態を作り、その結果クォークとグルーオンの閉じ込めが破れるため (図 1.2)、QGP 状態を再現することができる。

図 1.1: 宇宙創生の流れ

図 1.2: クォークとグルーオンの閉じ込めの破れ

1.2 高エネルギー重イオン衝突実験

高エネルギー重イオン衝突実験とは、実験室で QGP 状態を実現するた めに考案された実験である。加速器を用いて重い原子核をほぼ光速まで加 速し、正面衝突させることで高温状態をつくりだす。 原子核衝突の時間発展の様子を図 1.3 に示す。衝突後、2 つの原子核の パートン(クォークとグルーオンの総称)の散乱が始まり(図 1.3(3))、 その後熱平衡状態になり、QGP が実現する(図 1.3(4))。その後温度が下 がり、QGP 相からハドロン層へ相転移する(図 1.3(5))。このハドロン層 を観測し、QGP の性質を解明する。

1.2.1 RHIC 加速器

Relativistic Heavy Ion Collider(RHIC)加速器とは米国ブルックヘブン 国立研究所 (BNL)に建設された加速器で、陽子や金原子核など様々な粒子 をほぼ光速まで加速させ、衝突させることができる。全周約 3800 mのリ ング型加速器で、世界初の衝突型重イオン加速器である。図 1.4 は RHIC の全体写真であり、写真の通り RHIC の他に5つの実験エリアがある。

図 1.3: 原子核衝突の時間発展

図 1.4: RHIC 加速器

1.2.2 PHENIX 実験

Pioneering High Energy Nuclear Interaction eXperiment(PHENIX) 実 験とは RHIC を用いた高エネルギー重イオン実験の1つで、QGP の研究 や陽子の内部構造の研究をしている。2000 年から 2016 年までデータ収集 を行っていた

1.3 物理量の定義

1.3.1 centrality(中心衝突度)

中心衝突度とは、衝突する2つの原子核の重なり具合を示す量である。 図 1.5 は centrality について説明している。衝突する原子核のそれぞれ のビーム軸の距離を b(impaact parameter) という。b=0 の時は完全正面 衝突で centrality は 0%であり、b=2R のとき centrality は 100%である。 PHENIX 実験では 0-92%まで測定が可能である。実際の centrality を直 接測定することは不可能であるので、衝突により生成された荷電粒子の量 から見積もる。

☑ 1.5: centrality

1.3.2 反応平面

衝突する2つの原子核の中心を結ぶ直線と2本のビーム軸を含む平面を 反応平面という。図1.6 は反応平面の概念図である。この反応平面を基準 に発生粒子の方位角分布を測定する。

図 1.6: 反応平面

1.3.3 Npart,Npart_quark

Npart とは原子核同士が衝突した際に衝突に関与した核子 (陽子と中性 子の総称)の数のことであり、Npart_quark とは衝突に関与したパートン (クォークとグルーオンの総称)の数のことである。

1.3.4 Ncoll,Ncoll_quark

Ncollとは原子核同士が衝突した際に核子が衝突を起こした総数のことであり、Ncoll_quarkとはパートンが衝突を起こした総数のことである。

1.4 楕円率 (eccentricity)

eccentricityとは、2つの原子核が衝突した際の衝突部分の楕円率のこと である。重イオンで用いられる eccentricity には主に standard eccentricity と participant eccentricity があり、図 1.7[1] は eccentricity の概念図を表 している。黒い円が原子核を表しており、図のように原子核が衝突したと きに、青い点は、衝突した核子、またはパートンを表している。図の x 軸 は、先ほど説明した反応平面に相当する。y 軸は、反応平面に垂直な軸で ある。standard eccentricity とはこの x 軸、y 軸を基準に求めた楕円率の ことである。衝突した核子、パートンの座標より、

$$\varepsilon_s = \frac{\langle y^2 - x^2 \rangle}{\langle y^2 + x^2 \rangle}$$
(1.1)

で求められる。participant eccentricity とは、衝突したパートンの分布からもっともらしい軸を新たに設定し (図 1.7 の x ' 軸、y ' 軸)、その軸を基準に求めた楕円率のことである。衝突した核子、パートンの座標より

$$\varepsilon_{part} = \frac{\sqrt{(\sigma_y^2 - \sigma_x^2)^2 + 4\sigma_{xy}^2}}{\sigma_y^2 + \sigma_x^2} \tag{1.2}$$

で求められ、ここで

$$\sigma_x^2 = \{x^2\} - \{x\}^2 \tag{1.3}$$

$$\sigma_y^2 = \{y^2\} - \{y\}^2 \tag{1.4}$$

$$\sigma_{xy} = \{xy\} - \{x\}\{y\} \tag{1.5}$$

である。以上の式より、standard eccentricity でも、participant eccentricity でも図1.8のように、中心衝突になるほど0に近づき、周辺衝突になる ほど1に近づく。participant eccentricity のほうが実際の eccentricity に 近いため本研究では、participant eccentricity を使用する。

⊠ 1.7: eccentricity

図 1.8: centrality と eccentricityの関係

1.5 研究目的

本研究の目的は、原子核同士が衝突した際、核子の内部構造による participant eccentricity への影響を明らかにすることである。これまでの研 究では、原子核を構成する核子の内部構造は、考慮せずに eccentricity を 計算していた。本研究では、核子が有限な数のパートンによって構成さ れており、原子核衝突においてそれらのパートンが衝突をすると考えた場 合についての eccentricity を計算する。シミュレーションにより核子の内 部に任意の数のパートンを作成し、衝突したパートンの数 (Npart_quark) や、パートンの衝突回数 (Ncoll_quark) により participant eccentricity が どう変化するのかを検証する。

第2章 解析

2.1 シミュレーション解析の手順

シミュレーションを用いて疑似金原子核を作り、様々な条件で衝突させることで eccentricity の変化を求める。以下にプログラムの内容を示す。 (1) 衝突させる金原子核の衝突位置を乱数を用いて決める

(2) 各原子核に 197 個の核子が重ならず、核子密度分布が Woods-Saxson 型になるように乱数を用いて決める。

(3) 2つの原子核が衝突したときの衝突に関与した核子を求める。

(4) 衝突した核子の内部にパートンを作成する

(5) 衝突に関与したパートンを求め、衝突したパートンの数、パートンの 衝突回数を求める。

(6) 衝突したパートンの座標を用い、eccentricity を求める。

以下、内容についてさらに詳しく記述する。

2.1.1 核子作成

Woods-Saxson 型

本研究での金原子核の核子密度分布は Woods-Saxson 型の分布を使用 し、実際の式は以下に示す。

$$\rho(r) = \frac{\rho_0}{1 + e^{\frac{r-R}{a}}} \tag{2.1}$$

$$R = 1.18 \times A^{\frac{1}{3}} - 0.48[fm] \tag{2.2}$$

$$a = 0.54[fm]$$
 (2.3)

A は原子核の核子数で、本研究では金原子核を使用するため A=197 であ る。図 2.1 は金原子核の核子密度分布を示している。これを満たすことが 核子の一つ目の条件である。

図 2.1: Woods-Saxson 型の核子密度分布

核子の大きさ

乱数を用い、原子核半径内にランダムに核子を 197 個作成する。しか し、核子にも大きさがあるため、作成した核子が重ならないようにする為 に図 2.2 のようにすべての核子の中心は陽子半径の 2 倍の 1.752[fm] 以上 離れて作成することが二つ目の条件である。

図 2.2: 核子の大きさを考慮した原子核モデル

2.1.2 核子やパートンの衝突

プログラム内で衝突の判断をする際、衝突の反応断面積を用いて計算 する。本研究では、核子同士の衝突反応断面積は 42[mb] とする。原子核 の進行方向をz軸としたとき、原子核内の核子をxy平面に投影したとき の核子の距離をb (impact parametor)とする。そのとき $b_{max} \times \pi^2 = 42$ とし、b < bmax を満たした核子は衝突する。次にパートンの衝突判断に ついて述べる。核子の内部にパートンを作成する際パートンの数に依らず 衝突反応断面積を等しくすると、パートンの数が増えるほど衝突する核子 の数も増えるため、Npart を固定し、パートンの数を変えた時の内部構造 の影響を調べることができない。(これについては後で詳しく述べる)そ のためパートンの数により、パートンの衝突反応断面積を変える。核子の 衝突反応断面積 42[mb] を満たすパートンの衝突反応断面積はパートン3 個の時は 8.1[mb]、パートン5個の時は 3.6[mb]、パートン 10 個のときは 0.9[mb] である。その他の場合については以下の図 2.3[2] を参照する。こ の表の σ_{NN} は核子の衝突反応断面積、 N_c はパートンの数、 σ_{cc} はパート ンの衝突反応断面積を表している。本研究では核子の衝突反応断面積は 42[mb] であるので、 $\sigma_{NN}=42$ [mb] の箇所を参照する。

 \sqrt{s} (TeV) $\left| 0.019 \right| 0.2 \left| 2.76 \right| 5.02 \right| 7 \left| 13 \right|$

¥ \ /								
$\sigma_{\rm NN} \ ({\rm mb})$	33	42	64	70	74	78		
$N_{ m c}$		$\sigma_{\rm cc} \ ({\rm mb})$						
3	6.3	9.2	18.3	21.1	23.0	25.2		
3*	5.8	8.1	15.5	17.9	19.7	21.6		
5	2.4	3.6	8.4	10.3	11.4	12.7		
7	1.2	1.9	4.6	5.7	6.5	7.4		
10	0.6	0.9	2.2	2.8	3.3	3.8		
20	0.1	0.2	0.5	0.6	0.7	0.8		

TABLE II: Values used for $\sigma_{\rm NN}$ at various $\sqrt{s_{\rm NN}}$ at nucleon level, as well as corresponding N_c and σ_{cc} parameters at subnucleon level. The modified case is indicated with * (see text).

図 2.3: 衝突反応断面積

2.2 内部構造による Npart の変化

本研究では、核子の内部構造を有限な数のパートンによって構成するモ デルについても考える。このようなモデルにおいて、核子同士が衝突する ということは内部構造のパートン同士が衝突することと等しい。つまり、 核子同士が衝突反応断面積 42[mb] を満たしていても、パートンがパート ンの衝突反応断面積を満たしていない場合、その核子同士は衝突していな かったということになる。以下にこの例を示す。

図 2.4: パートンによる Npart

青い円は核子を表し、緑の円はパートンを表す。図 2.4(a) は核子は衝突 しているように見えるが、実際の内部構造のパートンは衝突していないた めこの核子は衝突していない。つまり図 2.4(a) での場合は Npart は 0 の ためこの核子は eccentricity の計算には加えない。

図 2.4(b) は核子も衝突し、内部構造のパートンも衝突している。そのためこの場合は 2 個の核子は衝突していることとなり、Npart は+ 2 する。 そしてパートンの座標を eccentricity の計算に加える。

2.3 sシミュレーションの正当性

シミュレーションの妥当性を示すために先行研究で得られている結果と 自分のプログラムで求めた結果を比較する。まず原子核が正しく作成さ れ、金原子核が衝突しているかを確認するために centrality vs Npart の グラフを図 2.5 に示す。このグラフは金原子核を 10000 回ランダムな位置 で衝突を起こし、Npart が多い順に 10000 個のデータを20 bin に振り分 ける。つまり、Npart が多い順に 500 個のデータを1つのプロットとして グラフに表示させる。グラフの赤色のプロットが先行研究の結果を表し、 青色のプロットが本研究に用いたプログラムによる結果である。 2つの データのプロットは一致していることより、本研究で使用する原子核モデ ルは正しいと考えられる。

次に、eccentricity の計算が正しく行われているか確認するために、centrality 10%毎の自分の作成したマクロで計算された participant eccentricity と、文献値 [3] の値を比べたグラフを図 2.6 に示す。図 2.6 の赤色 のプロットが本研究で使用するマクロから計算された participant eccentricity で、青色のプロットが文献値である。この2つのプロットは一致し

2.5: centrality vs Npart

 \boxtimes 2.6: centrality vs participant eccentricity

第3章 結果

3.1 内部構造の影響の有無

以下に eccentricity の計算に核子の座標を用いたものと、パートンの座 標を用いたものの Ncoll_quark vs eccentricity のグラフを示す。青色のプ ロットはクォークの座標を用いて計算したものを示し、赤色は核子が衝突 反応断面積を満たしていてもパートンが満たしていない場合は計算から除 いた核子の座標を用いて計算したもの、緑色は内部構造は考えず衝突した 核子の座標を用いて計算したものである。

図 3.1: 内部構造による eccentricity への影響

このグラフは内部構造の影響の有無を調べるために Npart を固定し、それ ぞれの Npart についての 10000 イベント分のデータをグラフにしている。 また、centrality 毎に内部構造の影響が変わる可能性を調べるためにも各 centrality 毎にグラフを分け、計4つのグラフを以下に示す。Centrality と Npart の関係は図 2.5 で示してある。図 2.5 から分かるように、Npart = 43 は centrality 約 60 %、Npart=102 は centrality 約 40 %、Npart=180 は centrality 約 20 %、Npart=300 は centrality 約 7.5 %を示している。図 3.1 は Npart を固定しているが、ここでの固定している Npart は 2.2 章で 説明しているように内部のパートンが衝突を起こしていない核子は Npart としてカウントされていない。そのため図 3.1 の中で全く内部構造を考え ない、つまりパートンが衝突を起こしていなくても核子が衝突したと思 われる時点でその核子の座標を eccentricity の計算に含んでいる赤色のプ ロットの Npart は固定されていない。そしてこの図 3.1 には図 2.5 と同様 に 1 プロットあたり 500 個のデータの平均値を表した 20 プロットが表示 されている。この結果より、どの centrality でも内部構造を考えることに より eccentricity の値が異なることがわかる。よって内部構造によってど のように eccentricity が変化するかをより詳しく調べる。

3.2 Ncoll_quark と eccentricityの関係

3.2.1 Npartのみを固定した場合の Ncoll_quark と eccentricity の関係

まず、Npartを固定することで各 centrality 毎の Ncoll_quark による影響 があるかを検討する。核子内部のパートンの数を3 個にし、毎回原子核の 衝突位置、核子の位置を変化させ Npart=180,102,43 のデータを各 10000 イベント分集めたものの一例を下図に示す。

図 3.2: Npart=180 の時の Ncoll_quark 図 3.3: Npart=102 の時の Ncoll_quark vs participant eccentricity vs participant eccentricity

図 3.4: Npart=43 の時の Ncoll_quark vs participant eccentricity

図 3.2 が centrality20 %, 図 3.3 が centrality40 %, 図 3.4 は centrality が 60 %のグラフである。cecentrality が小さいときは Ncoll_quark が増える ほど eccentricity も大きくなる傾向がみられたが、centrality が大きくなれ ばなるほど逆に Ncoll_quark が増えるほど eccentricity が小さくなる傾向 がみられるようになった。centrality40 %の場合は Ncoll_quark が増えても eccentricity が大きくも小さくもならない横ばいのようなグラフも多かった が、図 3.3 のように Ncoll_quark が増えれば増えるほど eccentricity が大き くなることも多かったため今回は Ncoll_quark と eccentricity が正の相関 を持つ図 3.3 を一例として載せている。また図 3.2, 図 3.4 より、centrality が小さいときの eccentricity の最大値と最小値の差は 0.01 以下であるが、 centrality が大きいときは 0.08 程度の差があり揺らぎが大きいことが分 かった。

3.2.2 核子と Npart を固定した場合の Ncoll_quark と eccentricity の関係

次に Npart と核子を固定し、内部構造パートンの位置のみを変化させ ることで内部構造の影響のみを考える。Npart と核子を固定するとはどう いうことか、簡単に述べる。例えば Npart=5 のデータを 10000 イベント 分収集するとする。そのためにはまず、原子核同士の衝突位置、核子の位 置を決める。核子が衝突を起こしていても内部構造のパートン同士が衝突 を起こしていない場合、核子は衝突していないものとするためこの時点で Npart は決まらない。核子の位置を決定した後に、核子の内部にパートン を作成する。図 3.5 に一例を示す。下図の大きな円は原子核、中間の円は 核子、色がついた小さな円はパートンを表す。例えばパートンが図 3.5(a) のように作成されたとする。図 3.5(a) の場合オレンジの核子は3個、青の 核子は2個衝突を起こしている。つまり Npart=5 を満たすため (a) の場 合の eccentricity を計算し、Npart=5の1イベント分のデータとして記録 する。次に原子核の衝突位置、核子の位置は全く同じにし、色のついた円 のパートンのみを再度ランダムに作成する。それが図 3.5(b) のようになっ たとする。この場合一番下にあるオレンジ色の核子はパートンが一つも衝 突していない。つまり衝突した核子はオレンジの核子が2つ、青色の核子 が2つでNpart=4となり条件を満たしていない。このような場合はデー タとして記録せずに再度パートンを作成する。これを繰り返し、10000イ ベント分データ収集したものを1つのグラフにする。

図 3.5: Npart の固定

このようにして核子、Npartを固定し、パートンの衝突回数 Ncoll_quark によって eccentricity がどのように変化するかを調べる。パートンの数を 3個にし、それぞれの centrality で Npart、核子を固定して 10000 イベン ト分のデータをグラフにすることで Ncoll_quark と eccentricity の相関を 見る。centrality が 60%,40%,20%の時の Ncoll_quark vs eccentricity のグ ラフを何度か作成して内部構造の影響を見た結果の一例を図 3.6,3.7,3.8 に 示す。

図 3.6: Npart=180 の時の Ncoll_quark 図 3.7: Npart=102 の時の Ncoll_quark vs participant eccentricity vs participant eccentricity

図 3.8: Npart=43 の時の Ncoll_quark vs participant eccentricity

図 3.6 が centrality20 %, 図 3.7 が centrality40 %, 図 3.8 は centrality が 60 %のグラフである。どの centrality でも Ncoll_quark が増えるほど eccentricity も大きくなる右肩上がりのグラフになることがほとんどだっ たが、centrality が大きくなるほど Ncoll_quark が増えるほど eccentricity が小さくなる右肩下がりのグラフが見られることがあった。centrality が 大きくなるほど右肩下がりのグラフがみられるようになったが、本研究で 行ったシミュレーションの最大 centrality60 %で何度もグラフを作成した 結果、右肩下がりのグラフになることは約5%程でありどの centrality で もほぼ全て右肩上がりのグラフになっている。また、核子を固定した場合 はどの centrality でも同じ Npart 内の eccentricity の最大値と最小値の差 は小さく、Npart のみを固定した場合よりも揺らぎが小さいことが分かっ た。しかし、centrality 2 0 %の時の最大値と最小値の差は 0.01 程度だが、 centrality 6 0 %のときは差は 0.03 程度でやはり centrality が大きいほう が揺らぎが大きいことが分かった。また、核子の位置を固定しているので 内部構造を全く考えなかった場合の核子で求めた eccentricity の値は一つ に決まる。核子の座標で求めた eccentricity の値は図 3.6 の場合は 0.234、 図 3.7 の場合は 0.456、図 3.8 の場合は 0.683 である。内部構造の影響を考 えるために図 3.6, 図 3.7, 図 3.8 の縦軸のスケールを合わせて核子の座標で 計算した eccentricity を赤線で表したものを以下に示す。

vs participant eccentricity

Ncoll-quark vs participant eccentricity

図 3.11: Npart=43 の時の Ncoll_quark vs participant eccentricity

図より、どの centrality でも核子の座標の eccentricity と内部構造の eccentricity の差は変わらないことが分かる。つまり centrality が大きいほうが eccentricity の値が大きいため、その差の割合は小さくなる。そのため centrality が大きいほうが内部構造の eccentricity は内部構造を全く考えなかった場合の値に近づくことが分かる。

3.3 Npart_quark と eccentricity の関係

3.3.1 Npart を固定した場合の内部構造の影響

次に衝突したパートンの数 Npart_quark と eccentricity の関係を調べる ために、Ncoll_quark の時と同様にパートンを3個にし、まずは Npart の みを固定し、Npart_quark vs eccentricity のグラフを作成する。centrality20%,40%,60%それぞれ 10000 イベント分のデータのグラフを複数作成 し、以下にその一例を示す。

図 3.12: Npart=180 の 時 の 図 3.13: Npart=102 の 時 の Npart_quark vs participant eccentricity pant eccentricity

図 3.14: Npart=43 の時の Npart_quark vs participant eccentricity

結果はNcoll_quarkの時と同様で、centralityが小さいときはNpart_quark が多くなればなるほど eccentricity が大きくなるが、centrality が大きい ときはその逆の傾向がみられることが多くなった。さらに centrality が大 きいほうが同じ Npart 内の eccentricity の最大値と最小値の差は大きくな るため揺らぎが大きいことが分かった。また、Ncoll_quark と同様に centrality40 %では右肩上がりのグラフだけでなく、Npart_quark に対して横 ばいのグラフも多く見られたので今回は横ばいになったグラフを一例とし て載せている。。これらのグラフより、Npart_quark も eccentricity に関係 があることが分かったため内部構造の影響のみを考えた時の Npart_quark と eccentricity の変化を詳しく調べる。

3.3.2 核子と Npart を固定した場合の Npart_quark と eccentricity の関係

内部構造の影響のみを考えるために原子核の衝突位置、核子の位置、 Npart を固定した場合の Npart_quark vs eccentricity のグラフを各 centrality で作成する。その一例を以下に示す。

図 3.15: Npart=180 の 時 の図 3.16: Npart=102 の 時 の Npart_quark vs participant eccentricity pant eccentricity

図 3.17: Npart=43 の時の Npart_quark vs participant eccentricity

図 3.15, 図 3.16, 図 3.17 より結果は Ncoll_quark の時と同様に核子を固定した場合は centrality が大きいときも多くが Npart_quark が増えれば増えるほど eccentricity も大きくなることが分かった。また、核子を固定しなかった場合に比べて揺らぎが小さいが、centrality が大きくなるほど揺らぎが大きくなることが分かる。また、内部構造を全く考えずに核子の座標を用いて計算した eccentricity の値は図 3.15 の時は 0.640、図 3.16 の時は 0.572、図 3.17 の時は 0.141 であった。図 3.15, 図 3.16, 図 3.17 の縦軸のスケールを合わせ、核子の座標を用いて計算した eccentricity を赤線で表した図を以下に示す。

pant eccentricity

図 3.20: Npart=43 の時の Npart_quark vs participant eccentricity

ncoll_quark の時と同様に centrality が大きくなるほどパートンで求め た eccentricity は内部構造を全く考えなかった場合の eccentricity に近づ いていることが分かる。以上より Npart_quark と Ncoll_quark による影響 の違いはほとんどないことが分かった。

3.4 パートンの数に依る内部構造の影響

3.4.1 パートン5個と3個の比較

今まで核子の内部にパートンを3個発生させてシミュレーションを行っ ていたが、パートンの数を増やし、パートンの数が変わったときに eccentricity に与える影響を調べる。2.1.2 章でも述べたように、パートンの数 を変えたときにパートンの衝突反応断面積も変更する。まずはパートンの 数を5個にし、3個の時と比べて影響の違いを見る。その結果の一例を図 3.21 に示す。

図 3.21: パートン3個と5個の比較

この図はそれぞれ核子の位置、Npartを固定し、パートンのみを毎回ラ ンダムに生成したものの 10000 回分のグラフである。左の青色のプロッ トはパートンが 5 個の時、右の赤色はパートンが 3 個の時の eccentricity を表している。横軸は先ほどの結果より Npart_quark も Ncoll_quark も 大きな違いがないことが分かったのでこの場では Ncoll_quark を用いて 比較している。図 3.21 より、パートンの数が変わっても Npart_quark と eccentricity の関係、つまりグラフの形の違いは無いように見える。

実際の eccentricity の値の違いを調べるために、各 Npart 毎にパートン の位置のみを 10000 回変更して求めた eccentricity の平均値をパートンが 5個の場合と3個の場合でそれぞれ求める。それぞれの場合の eccentricity の平均値を比べることでどちらの eccentricity が大きいのか、また値が大 きい eccentricity に対する2つの平均値の差の割合を調べる。もちろん、 ここでの比較はパートンの数による影響のみを見るために原子核の衝突 位置、核子の位置、Npart は全て等しい。この比較を centrality 毎の影響 の違いも調べるために Npart 50 ずつに分けて、各 Npart で 100 回、計 500 回分のデータの平均を示したものを以下の表にまとめる。以下の表の 大小の割合とは各 Npart 毎で 100 回 eccentricity の平均値を比較したとき のパートンの数それぞれの eccentricity の値が大きくなった確率を表して いる。そのためパートンの数が3個の場合と5個の場合の大小の割合の合 計は必ず 100 %になっている。次に差の割合とは2つの eccentricity の値 を比較した際に、大きかった eccentricity の値に対する 2 つの eccentricity の平均値の差の割合を求め、その割合の平均を表している。つまり差の割 合が大きいほどパートンの数が3個の場合と5個の場合の eccentricity の 差が大きいことになる。

Npart	$0\sim50(\text{centrality} 大)$		51	~100	10	$1 \sim 150$
	確率	差の割合	確率	差の割合	確率	差の割合
3個のほうが大きい	35 %	2.5 %	34 %	1.3 %	23%	1.7 %
5個のほうが大きい	65 %	1.2 %	66 %	2.0 %	77%	1.9 %

表 3.1: Npart:0~150

Npart	151~200		$201 \sim 250$ (centrality 小)		
	確率	差の割合	確率	差の割合	
3個のほうが大きい	21 %	1.2~%	18 %	0.6 %	
5個のほうが大きい	79%	2.2~%	82 %	2.3~%	

表 3.2: Npart:151~250

この表より、どの centrality でもパートン5個の方が eccentricity が大 きくなる傾向があることが分かった。さらに、パートンが5個の時のほう が大きくなる確率を見ると centrality が小さくなるほどその傾向が強いよ うにみえる。また、基本的にパートンが5個の方が eccentricity は大きく なるので、その eccentricity の差の割合はパートンが3個の方が大きくな る場合に比べて大きくなる傾向がみられた。

3.4.2 パートン10個と3個の比較

パートン3個と5個の場合の比較のみでパートンの数における eccentricity の影響を決めることは信憑性に欠けるため、核子内部にパートンを 10個作成し、パートンが10個の場合と3個の場合における eccentricity について調べ、先ほどの5個の場合と3個の場合の eccentricity について の結果と比べることでパートンの数による eccentricity への影響を明らか にする。先ほどの5個と3個の時と同様のグラフを以下に示す。

図 3.22: パートン3個と10個の比較

図 3.22 は緑のプロットがパートンの数 10 個の eccentricity で赤がパー トンの数 3 個の eccentricity を表している。この左と右のグラフは図 3.21 の時と同様に原子核の衝突位置、核子の位置、Npart が同じでパートンの 数のみが違う。結果はパートンの数が 5 個と 3 個を比較したときと同様 に、グラフの形はパートンの数を増やしても同じように見える。実際の eccentricity の値の差を見るために同様の表を以下に示す。

Npart	$0\sim 50$ (centrality \pm)		\sim 50(centrality \bigstar) 51 \sim 100		101~150	
	確率	差の割合	確率	差の割合	確率	差の割合
3個のほうが大きい	42 %	1.9 %	38 %	2.2~%	38~%	2.1 %
5個のほうが大きい	58 %	2.6 %	62 %	2.1 %	62~%	2.8~%

表 3.3: Npart:0~150

Npart	$151 \sim 200$		$201 \sim 250$ (centrality 小)		
	確率	差の割合	確率	差の割合	
3個のほうが大きい	29%	2.5 %	26%	2.2~%	
5個のほうが大きい	71 %	2.6 %	74 %	3.3~%	

表 3.4: Npart:151~250

この表より、どの centrality でもパートンを10 個にしたほうが eccentricity が大きくなり、その確率は centrality が小さくなるほど高くなるという同 様の結果が得られた。また表では各 centrality 毎の差の割合を表示してい るが、全 centrality の差の割合を平均すると、パートンの数が3個の場合よ りも5個の場合のほうが eccentricity は 1.72 %大きくなり、3 個の場合よ りも10個の場合のほうが eccentricity は 2.68 %大きくなる。つまりパー トン3個の時よりも5個、5 個の時よりも 10 個の時のほうが eccentricity が大きくなることがわかった。

3.5 まとめ

本研究では $\sqrt{s_{NN}}=200$ Gev で金原子核を衝突させたときの衝突初期形状 の eccentricity の核子の内部構造依存性をシミュレーションを行うことで調 べた。まず、原子核衝突を一回起こした際に、その eccentricity は内部構造 のパートンが衝突を起こした回数 Ncoll_quark とどのような関係があるか調 べた。その結果は基本的にはどの centrality でも Ncoll_quark が増えるほど eccentricity が大きくなるが,centrality が大きくなるにつれ、Ncoll_quark が増えるほど eccentricity が小さくなる傾向もみられることが分かった。次 に Npart_quark と eccentricity の関係を調べた。その結果 Ncoll_quark と同 様の結果が得られたことから、Ncoll_quark と Npart_quark による影響の 違いはないと考えられる。次に核子内部のパートンの数による eccentricity への影響を明らかにするために、パートンの数が多いほど eccentricity は大き くなり、centrality が小さくなるほどその傾向が強くなることが分かった。 しかし、パートンの数による eccentricity の差は 1.72 %,2.68 %というわ ずかな差のため実際に実験でこの違いを見ることは難しいと考える。

本研究では eccentricity について様々なことが明らかになったが、実際の PHENIX 実験の Au+Au 衝突のデータからは eccentricity を直接測定することは不可能である。そのため、eccentricity と関係があるといわれている原子核衝突を起こした際の反応領域の方位角異方性を表す量 v₂と具体的な相関を明らかにすることを今後の課題としたい。

第4章

4.1 謝辞

本研究を進めるにあたり、林井先生、宮林先生、下村先生、蜂谷先生に は大変多くのご指導、ご助言を頂き深く感謝申し上げます。特に下村先生 には、常に気をかけてくださり、小さな疑問でもなんでも相談に乗ってく ださったため不安に思うことなく研究を続けることができました。また、 実験データを解析する機会だけでなく、実際の実験現場に赴く機会を頂け たことに深く感謝申し上げます。蜂谷先生にはソフトウェアについてや、 日々のミーティング等で小さなご指摘からたくさん助言を頂きました。先 輩方には研究室での生活のことから物理の話まで教えていただき、いつも 優しく対応してくださってありがとうございました。重イオングループの 柴田さん、森田さん、高濱さん、並本さん、波田さん、杉山さんには、発 表の仕方やソフトウェアの便利な使用方法など様々なことについて助言い ただきました。また、4回生の皆さんのおかげで研究室に行くことがとて も楽しく、何度も励まされました。皆様のおかげで本研究を行うことがで きたこと、この場を借りて深く感謝申し上げます。

参考文献

- Eccentricity fluctuations and elliptic flow at RHIC Physics Letters B Volume 641, Issues 3–4, 12 October 2006, Pages 260-264
- [2] クォークな数による衝突反応断面積 Phys.Rev.C94,024914(2016)
- [3] 下村真弥 筑波大学大学院 博士論文 Systematic Study of Azimuthal Anisotropy for Charged Hadron in Relativistic Nucleus-Nucleus Collisions at RHIC-PHENIX
- [4] 黒田奈津貴 奈良女子大学 2021年度卒業論文
- [5] 高濱瑠菜 奈良女子大学 2021年度卒業論文
- [6] 石丸桜子 奈良女子大学 2019年度修士論文
- [7] 武田明痢奈良女子大学 2017年度修士論文
- [8] QGP http://alice-j.org/
- [9] QGP http://kakudan.rcnp.osaka-u.ac.jp/jp/overview/world/QGP.html
- [10] RHIC 加速器 https://www.riken.jp/press/2010/20100216/