τ[−]→π[−]π⁺π[−]π⁰ν_τ崩壊の崩壊分岐比と スペクトラル関数の測定

奈良女子大学大学院人間文化研究科 物理科学専攻 高エネルギー物理学研究室 田中恵梨香

目次

- τ⁻→π⁻π⁺π⁰π⁻ντの物理
- 4π系のスペクトラル関数
- 実験装置
- 事象選別
- τ⁻→π⁻π⁺π⁰π⁻ν_τの質量分布
- 崩壊分岐比
- ・アンフォールド
- スペクトラル関数の導出
- ・以前の実験との比較
- ・まとめ

第3世代に属する最も重いレプトン(電子の約3500倍の質量=1.777GeV) ハドロニック崩壊をする唯一のレプトン

 4π 系のスペクトラル関数($v^{4\pi}$) $= \frac{M_{\tau}^2}{6|V_{ud}|^2 S_{EW}} \frac{1}{(1 - \frac{s}{M_{\tau}^2})^2 (1 + \frac{2s}{M_{\tau}^2})}$ $\mathcal{B}_{4\pi}$ $dN_{4\pi}$ 1 $v^{4\pi}(s)$ \mathcal{B}_e 実験によって決まるのは 崩壊分岐比 質量2分布 □崩壊分岐比 □質量²分布 OPAL実験のベクター状態のスペクトラル関数 s:4πの質量² V [5] M₁: τ粒子の質量 • OPAL $\pi \pi^0$ V_{ud}:小林益川行列のud成分 2.5 3π π⁰, π 3π⁹ S_{FW}:電弱相互作用による補正係数 MC corr. 2 perturbative QCD (massless) B_{4π}:τ→4πν_τの崩壊分岐比 — naïve parton model B_a:τ→e v_a v_rの崩壊分岐比 1.5 <u>1</u><u>A</u><u>A</u>:4πの質量²分布 1 0.5 0 0.5 2.51 1.5з s (GeV²

<u>緑の分布が4π系に対応</u> これまでの実験より2桁以上の統計データをもつBelle実験のデータを用いて高い質量領域 の精度を上げる

実験装置 Belle検出器

* KEKB加速器で生成された粒子を検出する大型検出器で複数の検出器から構成されている。

*高いエネルギー分解能及び運動量分解能と優れた粒子識別能力を持つ。

SVD:粒子崩壊点の測定 CDC:荷電粒子の飛跡や 運動量の測定 ACC:K[±]と^{π±}の識別 TOF:荷電粒子の飛行時 間を測定 ECL:電子や光子の エネルギー測定 KLM:K₁,^μ粒子検出器

e⁺e⁻→τ⁺τ⁻事象選別1

2000年10月から2008年8月までにBelle実験で収集されたデータ → 775.9/fb

Belle検出器で収集された全反応から、τ対生成を選びだすことが必要 ロ荷電粒子の本数が2本または4本で、電荷の合計が0

e⁺e⁻→τ⁺τ⁻選別条件2

τ⁻→π⁻π⁺π⁻π⁰ν₋事象選別1

τ粒子が1つのπ^oと3つの荷電πに崩壊する事象を選別する。 (もう片方のτ粒子は電子かμ粒子に崩壊)

シグナル側の半球

- 1. 半球中にπ^oが1つある(π^o再構成について次ページ)
- 2. 半球中に荷電飛跡が3本あり、その荷電の合計が-1または+1である
- 3. 荷電粒子がπであることを要求(次ページ)
- 4. π^oを2個以上含む事象の除去

π^oから崩壊した2つの光子以外に高いエネルギー (200MeV以上)の光子がある事象は除く

シグナルと反対側(tagside)の半球

1. 電子が1つ、またはµ粒子が1つのみが存在する

シグナル側の半球

τ⁻→π⁻π⁺π⁻π⁰ν₋事象選別2

荷電πを識別する条件

粒子識別の確率P(π/K)を用いて荷電粒子がπであることを要求 P(π/K)≧0.6をπと仮定する。

π[®]を再構成するために用いる光子の条件

2つの光子の不変質量とπ⁰の質量の差を、 光子の質量分解能で割ったものをSyyと定義した。

$$S_{\gamma\gamma} \equiv \frac{(m_{\gamma\gamma} - m_{\pi^0})}{\sigma_{\gamma\gamma}}$$

m_{γγ}:γの不変質量 m^πº:π^⁰の質量 σ_{γγ}:m_{γγ}の分解能

シグナル領域を-6≤S_{YY}≤5として シグナル領域のみを解析に用いる。

光子対の選択

2つの光子(光子対)でπ⁰中間子が再構成される。

光子対の選び方 S_{vv}の緩い条件(-14< S_{vv}<14)のとき

●光子対の組み合わせが1通りに限られる場合:80%

複数のπ⁰候補に1つの光子が重複して用いられる場合:20%

→相手方のうち、エネルギーが高い光子(y1)との対を選択する。

 $E(\gamma_1) > E(\gamma_2)$

質量2分布

τ⁻→π⁻π⁺π⁻ π⁰ντ崩壊の候補 245万事象

黒丸・・・データ (ほとんどのエラーが 黒丸のサイズ以下)

灰色・・・シミュレー ションの信号分布 (Taulora:τのシミュ レーションの標準プ ログラム)

<mark>赤緑紫青黄</mark>・・・ シミュレーションの バックグラウンド

バックグラウンド

Source	fractions (%)	4πの質量 ² 分布のlogスケール
3 π 2 π ⁰	4.58	$\sum_{i=1}^{N} 10^{5} \qquad -data \qquad \tau \rightarrow v_{\tau} 3\pi\pi^{0}$
3 π	3.56	$ \begin{array}{c} \mathbf{U} \\ \mathbf$
π Ks (1/2) π ⁰	0.70	$ \begin{array}{c} \circ \\ \circ $
$3 \pi \geq 3 \pi^0$	0.08	Ulter decays Ulter decays uds&charm
K2 π π ⁰	0.23	
π2π ⁰	0.16	
other τ decays	0.58	
not lepton in tag-side	2.25	10
uds(e⁺e⁻→ qq¯)	0.74	
charm(e ⁺ e ⁻ \rightarrow cc ⁻)	1.94	1 2 3 4 5 6 7 8
Total	14.8	S(π ⁻ π ⁻ π ⁺ π ⁰)(GeV) ²

e⁺e⁻→ qq (q=u,d,s,c)の分布の形はMCのシミュレー ションを使用し、絶対値はT より高い3.4GeV²以上 の高質量領域でデータから評価した

崩壊分岐比の測定方法

τ⁻→π⁻π⁺ π⁻ π⁰ντ事象(反対側は電子かμ 粒子に崩壊)の事象数

$$\begin{split} N_{4\pi-\ell} &= 2 \times N_{\tau\tau} \times \left(B_{4\pi} \times B_e + B_{4\pi} \times B_{\mu} \right) \\ B_{4\pi} &= \frac{N_{4\pi-\ell}}{2 \times N_{\tau\tau} \times \left(B_e + B_{\mu} \right)} \end{split}$$

このときe⁺e⁻→τ⁺τ⁻事象の事象数N_{tt}を求めるために 崩壊分岐比が精度よく測られているe-µ 事象を使う

$$B_{4\pi} = \frac{N_{4\pi-\ell}}{N_{e-\mu}} \times \frac{B_e \times B_\mu}{\left(B_e + B_\mu\right)}$$

e-μ事象とは 片方のτ粒子が電子へ、もう片方の τ粒子がμ粒子へ崩壊する事象。

 $\mu_{\mu} \quad (B_e + B_{\mu})$ この式で崩壊分岐比を測定!

 $\rightarrow e-\mu$ 事象との事象数の比から求めることで、多くの系統誤差(ルミノシティー、 σ_{tr} 、 η_{track} 、 η_{PID})がキャンセルまたは減少できる

ν_τπ

 π^{0}

崩壊分岐比

$$B_{4\pi} = \frac{N_{4\pi-\ell}}{N_{e-\mu}} \times \frac{B_e \times B_\mu}{\left(B_e + B_\mu\right)}$$

崩壊分岐比を測定するために e-μ事象を選別する必要あり!

それぞれの半球で電子1つとμ粒子1つに崩壊する事象を選別。

- 1. 荷電粒子が半球に1本ずつの計2本ある。
- 2. 荷電粒子が電子とµ粒子であることを要求。

e-µ事象の候補 809万事象

赤丸・・・データ
 黒線・・・シミュレーションの信号分布
 青黄・・・シミュレーションのバックグラウンド

17

バックグラウンド

Mode	fraction		
п - е	1.44 %		
ρ - e	0.36 %		
π - μ	0.13 %		
К-е	0.14 %		
Other tau decays	0.17 %		
ее→ееµ µ	3.08 %		
Total	5.33 %		

バックグラウンドと検出効率の補正

	崩壊分岐比	宝殿名鸟	Note	$N_{c-\mu}^{obs}$	$b_{4\pi} \not= (\%)$	$b_{e-\mu}(\%)$
		9	13050	46286	15.014	5.525
N_{1} $(1-b_{1})$ n_{2} $B_{2}B_{1}$		11	28686	100 197	14.890	5.533
$Br_{4\pi} = \frac{r_{4\pi-1}}{2} \times \frac{r_{e-\mu}}{4\pi-1} \times r$			36027	124 142	14.546	5.542
	$\eta_{4\pi-l} \qquad N_{e-\mu}(1-D_{e-\mu}) (B_e+B_{\mu})$	15	42799	149361	14.884	5.648
		17	35382	124316	14.997	5.641
		19	84021	294606	14.936	5.651
月	崩壊分岐比を実験時期ごとに求めた 	21	11742	39132	15.334	5.633
	代表例	23	22731	79843	15.122	5.659
Г		25	81643	287350	15.040	5.652
		27	86701	305724	15.083	5.719
	4元事家の候補数: N _{4π-l} = 254651	31	62790	208302	15.021	5.417
	e-μ事象の候補数:Ν。= 843955	ರರ ೧೯	65109 Koree	211109	14.950	3.930 7
		00 07		100,900	14.700	0.009
		37 20	215957	701098 40074 2	19.855	3.983U 6 634
	$b_{4\pi-1} = 14.7 \%$	09 41	103023	490,020	13.099	0.004 (497
	e-μ事象のバックグラウンド:	42 42	10/70/04	602029 604604	14.050	0.201 6 ATE
	h - 552%	TU A(48520	166444	14 577	0.710 6.606
	$D_{e-\mu} = 5.55 \%$	47	1271.26	411798	14 777	5 469
	4π事家の検出効率:η _{4π-l} =11.0%	 40	103201	302051	14.805	0.200 5 50a
	e-u事象の検出効率:n_=18.2%	51	139285	453727	14.807	5 475
		55	254651	843955	14.726	5.534
		61	122504	401666	14.668	5.498
	B _e =17.8 % (PDG)	63	126264	412924	14.659	5.529
	τ→uv., v_の崩壊分岐比: 「 ↓	65	139933	459975	14.522	5.532
	D = 17.40/					
	$D_{\mu} - 17.470$					
	(PDG)					

17t -- µ

18.565

18.647

18.478

18.335

18.185

18.164

18.272

18.253

18.187

18.176

18.272

18.424

18.193

18.108

18.250

18.022

17.931

18.139

18,000

17.932

18.231

18.222 18.507

18.379

18.319

*#ar --- *

10.732

10.739

10.700

10.598

10.451

10.436

10.416

10.513

10.433

10.426

11.090

11 2 15

10.959

10.972

11.088

10.946

10.917

11.115

10.993

10.959

11.113

11.021

11.2.18

11.266 11.230

崩壊分岐比の系統誤差の評価

Items	⊿Br/Br			
トラックの検出効率の不定性	0.7%			
π中間子識別効率の不定性	1.5%			
π ⁰ 中間子の検出効率の不定性	1.5%			
τのバックグラウンドの不定性	0.4%			
レプトニック崩壊の崩壊分岐比の不定性	0.1%			
ee→e e μ μの寄与の不定性	0.6%			
γベトー効率の不定性	1.2%			
トリガー効率の不定性	0.8%			
ハドロン崩壊モデルの不定性	0.7%			
Total	2.8%			

崩壞分岐比

長期間の崩壊分岐比の安定性

崩壊分岐比B_{4π} = 4.53 ± 0.00 ± 0.13 % 世界平均(PDG)B_{4π} = 4.48 ± 0.06 %

真の質量分布の測定

観測された質量²分布には、検出器の検出効率や分解能などの影響が含まれている。 これを真の分布に戻すためにアンフォールドが必要!

Singular Value Decomposition(SVD)法である

SVD法とは

行列Aの固有値がどこまで意味あるのかをチェックし意味ある部分だけを用いる

 $A\mathbf{x} = \mathbf{b}$ $\mathbf{x} : 真の分布(知りたい分布)$ $\mathbf{b} : 観測された分布$ $\mathbf{x} = A^{-1}\mathbf{b}$ A : 検出器 Oresponse matrixしかしAの逆行列が必ずしももとまらない。 この問題は行列Aを分解することで解決できる A = USVここでSは対角行列、UとVは直交行列 $S = \begin{pmatrix} s_1 & 0 & 0 & 0 \\ 0 & s_2 & 0 & 0 \\ 0 & 0 & \ddots & \vdots \\ 0 & 0 & \cdots & s_n \end{pmatrix}$ SiltAの固有値 $s_1 > s_2 > \cdots > s_n$

固有値Siのうち観測された分布bのbinごとの統計と比較して 意味のあるところだけとることが必要

どこまで固有値の値を残すかが非常に重要!!

Response matrixの質量分解能部分

アンフォールド準備

質量2分布からバックグラウンドを除いた分布を作る

24

アンフォールド準備

実験データでのアンフォールド

バックグラウンドを除いたデータでアンフォールドを行った

Binごとの統計誤差は0.5~1.0%程度

26

スペクトラル関数結果

(本研究)バックグラウンドを差し引 き、アンフォールドを行った後

OPAL実験:4π系でのアンフォールド後

まとめ

- Belle実験で2000年10月から2008年6月に収集した 775.9/fbのデータからτ⁻→π⁻π⁺π⁻π⁰ντ事象2.4×10⁶ 事象観測。
- e-μ事象の観測も同時に行い8.1×10⁶事象観測し、τ⁻ →π⁻π⁺π⁻π⁰ντ事象の崩壊分岐比B_{4π}=4.53±0.13と測 定。世界平均と誤差範囲内で一致。
- SVD法でアンフォールドした4π質量²分布と測定した崩 壊分岐比を用いてスペクトラル関数を測定。現在もっと も精度の良い測定結果である。
- 今後はこの結果を用いて理論的な解析に使われる予定。