

RHIC-PHENIX実験での原子核衝突におけ るQGP中のエネルギー損失の系統的研究

奈良女子大学大学院 人間文化総合科学研究科 物理科学専攻 高エネルギー物理学研究室 修士2年

柴田 実香

2021年度修士論文発表会

2022/2/17

目次

1. 序論

- 2. 解析手法
- 3. 結果·考察
- 4. まとめ

- 1. クォーク・グルーオンプラズマ (QGP)
 - ビックバンの100万分の1秒後の初期宇宙に存在
 - クォークとグルーオンが高温高圧下で核
 子による閉じ込めから解放された状態
- 2. 原子核衝突実験でQGPを生成
 - 加速器を用いて原子核同士を高エネル ギーで衝突させることで、高温高密度の 状態を生成。

3. RHIC加速器

- ・ 米国 ブルックヘブン国立研究所
- 様々な原子核を重心系エネルギー200GeVで衝突 (金金衝突、銅銅衝突、銅金衝突など)
- PHENIX実験:原子核衝突反応からQGP状態の生成とその性質を探究することが目的。
- 4. RHICで発見されたQGP生成の証拠となる事象
 - 高い横運動量(p_T) ハドロンの収量抑制
 - 大きな方位角異方性v₂

4. RHICで発見されたQGP生成の証拠となる事象

① 高い横運動量 (p_T) ハドロンの収量抑制

- ・ $\frac{\pi^0$ の生成量(金+金衝突)} 核子衝突数(N_{coll}) < π^0 の生成量(p+p衝突)
- $\pi^0 o p_T$ 分布がエネルギー損失の結果、低い p_T へシフト。

4. RHICで発見されたQGP生成の証拠となる事象

6

|ア 早 <u>RHICで発見されたQGP生成の証拠となる事象</u>

① 高い横運動量 (p_T) ハドロンの収量抑制 • S_{loss} : 高 p_T ハドロンのエネルギー損失割合 $S_{loss} = \frac{p_T^{pp} - p_T^{AA}}{p_T^{pp}}$

1.
$$S_{loss}$$
は p_{T} に大きく依存せず一定。

- 2. S_{loss}はcentralityに依存しており、反応領域 が大きい中心衝突ほどS_{loss}が増加。(<u>Phys.</u> <u>Rev. C. 93. 024911 (2016)</u>)
- 3. *S*_{loss}は反応領域中の通過距離に対し増加傾向。(Phys. Rev. C. 76. 034904(2007))

- ・目的:高エネルギー原子核衝突実験において、反応領域の大きさと密度が異なる 衝突系でのQGP中の放出粒子のエネルギー損失を系統的に研究し、定量的に評価 する。
- ・特色:エネルギー損失割合を2つの異なる方法で評価

解析手法1「Suss」

Phys. Rev. C 93, 024911 (2016)

解析手法2「S'_{loss}」

S_{loss} と S'_{loss} を評価する3つの依存性の計算 12

- 1. 通過距離(L)依存性
 - 反応領域中の通過距離による評価。
- 2. 衝突関与核子数(Npart)依存性
 - N_{part}: 衝突に関与した核子数
 - ・ <mark>衝突直後(粒子発生前)の状態の粒子密度</mark>による評価。
- 3. 生成粒子多重度 (dN/dη) 依存性
 - $dN/d\eta$:単位擬ラピディティあたりの衝突による生成粒子数。 ($\eta = 0$)
 - ・ 衝突による<mark>粒子発生後の状態のエネルギー密度</mark>による評価。

13

反応領域中の通過距離(L)計算 <N_{part}分布>

原子核対衝突事象の生成

2. 中心度 (centrality) 10% ごとに通過

衝突関与核子数(N_{part})の計算 14 <N_{part}の方位角分布> N_{part}: 衝突に関与した核子数 中心衝突 非中心衝突 <mark>(粒子発生前)の状態の粒子密度</mark>による評価。 衝突 百後 1. 原子核対衝突事象の生成し、centrality 10%ごと衝突関与核子数(N_{part})を 計算。 2. N_{part} の方位角 (ϕ_{part})分布を測定。 1897 collisions AuAu 1897 collisions AuAu 1/1897 scaled 1/1897 scaled 3. in-plane方向 ($\phi_{part} = 0$) の N_{part} を $N_{part,out}$ -0.5 0 0.5 200GeV Au+Au Npdrt,out $N_{part,in}$ 、 out-of-plane方向 (ϕ_{part} = N_{part,in} N_{part,in} $\frac{\pi}{2}$) $\mathcal{O}N_{part} \mathcal{E}N_{part,out} \mathcal{E} \mathcal{T} \mathcal{T}$. 250 • $N_{part,in} = 8 * \left| N_{part} \right|_{\phi_{part}=0}$ 200 150 • $N_{part,out} = 8 * |N_{coll}|_{\phi_{part} = \frac{\pi}{2}}$

100

生成粒子多重度 (*dN/dη*) の計算

 p_y

dN/dη:単位擬ラピディティあたりの衝突による生成粒子数(η = 0)
 擬ラピディティ(η):発生粒子の運動を記述する変数。ビーム軸(z)

・ 擬 \mathcal{L} \mathcal

$$\begin{pmatrix} p \end{pmatrix}$$
 $p_{z_{\odot}} \xrightarrow{p_{z_{\odot}}} p_{x_{\odot}} \xrightarrow{\gamma = \infty} p_{x}$

- ・ $dN/d\eta$:単位擬ラピディティあたりの衝突による $\frac{dN}{d\eta}$ を N_{part} と N_{coll} ; 見積もる。
 - $\frac{dN}{d\eta} = 0.88 * N_{part} + 0.34 * N_{coll}$ • $\left|\frac{dN}{d\eta}\right|_{in} = 0.88 * N_{part,in} + 0.34 * N_{coll,in}$ • $\left|\frac{dN}{d\eta}\right|_{out} = 0.88 * N_{part,out} + 0.34 * N_{coll,out}$

 $\eta \equiv tanh^{-1}\left(\frac{p_{\rm z}}{2}\right) = tanh^{-1}(\cos\theta)$

15

2022/2/17

1. エネルギー損失割合のp_T依存性

- 2. エネルギー損失割合のL依存性
- 3. エネルギー損失割合 S_{loss} の N_{part} 依存性と $dN/d\eta$ 依存性
- 4. S_{loss}のL依存性とN_{part}依存性とdN/dη依存性の比較
- 5. エネルギー損失割合 S'_{loss} の N_{part} 依存性と $dN/d\eta$ 依存性

結果「エネルギー損失割合のp_T依存性」

反応領域の大きさと密度が

異なる衝突系

 $S_{\rm loss} vs. p_{\rm T}$

- 1. 金金衝突の荷電ハドロン
 - *p*_T 依存性が π⁰と一致。 →大きな<mark>粒子種依存性なし</mark>
- 2. 銅金衝突の π⁰
 - S_{loss} は p_{T} に大きく依存せず一定。
 - S_{loss}はcentralityに依存しており、
 反応領域が大きい中心衝突ほど
 S_{loss}が増加。

```
→<mark>先行研究における</mark>π<sup>0</sup>と同じ傾向
```


結果「エネルギー損失割合のp_T依存性」 S_{loss,in}, S_{loss,out} vs. p_T

• $S_{loss} \& S'_{loss}$ は比較可能な量であるか検証した。

 $< S'_{\text{loss}} \geq S_{\text{loss}} \mathcal{O} 関係式 > \\ S'_{\text{loss}} = \frac{p_{\text{T}}^{\text{AA,in}} - p_{\text{T}}^{\text{AA,out}}}{p_{\text{T}}^{\text{AA,out}}} = \left(\frac{p_{\text{T}}^{\text{pp}} - p_{\text{T}}^{\text{AA,out}}}{p_{\text{T}}^{\text{pp}}} - \frac{p_{\text{T}}^{\text{pp}} - p_{\text{T}}^{\text{AA,in}}}{p_{\text{T}}^{\text{pp}}}\right) \times \frac{p_{\text{T}}^{\text{pp}}}{p_{\text{T}}^{\text{AA,in}}} = \left(S_{\text{loss,out}} - S_{\text{loss,in}}\right) \times \frac{p_{\text{T}}^{\text{pp}}}{p_{\text{T}}^{\text{AA,in}}} \\ S'_{\text{loss}} \cong (\text{out-of-plane方向に生成する粒子のS_{\text{loss}}}) - (\text{in-plane方向に生成する粒子のS_{\text{loss}}})$

19

結果「エネルギー損失割合のp_T依存性」 S_{loss,in}, S_{loss,out} vs. p_T

20

1. エネルギー損失割合のp_T依存性

- 2. エネルギー損失割合のL依存性
- 3. エネルギー損失割合 S_{loss} の N_{part} 依存性と $dN/d\eta$ 依存性
- 4. S_{loss}のL依存性とN_{part}依存性とdN/dη依存性の比較
- 5. エネルギー損失割合 S'_{loss} の N_{part} 依存性と $dN/d\eta$ 依存性

結果「エネルギー損失割合のL依存性」 $S_{loss} vs.L$

- ●金銅、金金、銅銅衝突 $\sigma\pi^0$
 - S_{loss}はLの関数に対し
 増加傾向。
- ●金金衝突のπ⁰
 - フィット関数: $f(x) = p0 * x^{p1}$
 - S_{loss} は概ね L^2 に比例。
 - 高p_TハドロンのQGP中でのエネルギー損失機 構において、グルーオン放射の寄与が大きい ことを示唆。

反応領域中の通過距離(L)による評価。

- 1. エネルギー損失割合のp_T依存性
- 2. エネルギー損失割合のL依存性
- 3. エネルギー損失割合 S_{loss} の N_{part} 依存性と $dN/d\eta$ 依存性
- 4. S_{loss}のL依存性とN_{part}依存性とdN/dη依存性の比較
- 5. エネルギー損失割合 S'_{loss} の N_{part} 依存性と $dN/d\eta$ 依存性

結果「エネルギー損失割合の N_{part} 依存性と $dN/d\eta$ 依存性」 25 $S_{\text{loss}} vs. N_{\text{part}}, S_{\text{loss}} vs. dN/d\eta$

- ●銅金、金金、銅銅衝突 $\sigma\pi^0$
 - S_{loss}はN_{part}やdN/dηの関数に対し

 し

 増加傾向
 - 3つの衝突系をN_{part}とdN/dηの 関数で比較すると一致。

- 1. エネルギー損失割合のp_T依存性
- 2. エネルギー損失割合のL依存性
- 3. エネルギー損失割合 S_{loss} の N_{part} 依存性と $dN/d\eta$ 依存性
- 4. S_{loss}のL依存性とN_{part}依存性とdN/dη依存性の比較
 ① <u>比較点</u>:反応領域の大きさと密度が異なる衝突系
 ② <u>比較点</u>:異なる方位角方向に生成する粒子
- 5. エネルギー損失割合 S'_{loss} の N_{part} 依存性と $dN/d\eta$ 依存性

2.7

- 結果「依存性の比較①」 $S_{\text{loss}} vs. L, N_{\text{part}}, dN/d\eta$
- 金金、銅金、銅銅衝突における π^0 の S_{loss} は「 N_{part} または $dN/d\eta$ の関数」で比較すると一致した。 $\rightarrow \overline{D}$ 応領域の大きさと密度が異なる衝突系における S_{loss} を1つの関数でフィット。
- フィット関数 $f(x) = p0 * x^{p1} + p2$
- フィット関数の χ^2/ndf
 - L : 0.604
 - N_{part} : 0.101
 - $dN/d\eta$: 0.094
- 反応領域の大きさと密度が異なる3つの衝突系のSlossは、L、 Npart、 dN/dηの関数で一意に表される。
- Lの関数としてよりもN_{part}
 やdN/dηの関数として比較した
 方が、より一致した。

2022/2/17

- 1. エネルギー損失割合のp_T依存性
- 2. エネルギー損失割合のL依存性
- 3. エネルギー損失割合 S_{loss} の N_{part} 依存性と $dN/d\eta$ 依存性
- 4. S_{loss}のL依存性とN_{part}依存性とdN/dη依存性の比較
- 5. エネルギー損失割合 S'_{loss} の N_{part} 依存性と $dN/d\eta$ 依存性

。2021年度修士論文発表会柴田実香

 χ^2 / ndf

p1

0.3

30

1.171/3

p0 0.1773 ± 0.03812

fit function $f(x)=p0^{+}x^{-1}$

centrality 0-50%

200GeV Au+Au pi0

 0.7175 ± 0.1348

 $\frac{|dN|^{0.1501}}{|d\eta|^{0.1501}}$

まとめ・今後

- 反応領域の大きさと密度の違う衝突系における、QGP中の放出粒子のエネルギー損失を系統的に研究し、定量的に評価することが目的。
- S_{loss} は p_{T} に大きく依存せず一定で、反応領域が大きい中心衝突ほど増加。
- S'_{loss}は反応領域の幾何学的異方性が強い非中心衝突ほど増加。
- ・反応領域の大きさと密度の違う衝突系における S_{loss} は、Lや N_{part} 、 $dN/d\eta$ の関数で比較すると一致する。
- ・異なる方位角に放出される粒子のエネルギー損失は、N_{part}やdN/dηの関数で比較すると一致する。
- S'_{loss} は、 S_{loss} の N_{part} と $dN/d\eta$ 依存性の結果を使用した関数により正の相関を示す。
- 現在は、結果と理論モデルの比較を行うためにJetScapeと呼ばれる重イオン衝突シミュレーション フレームワークを用いたシミュレーションに取り組んでいる。この比較により、QGP 中での粒子の エネルギー損失に関する、より詳細な情報が得られると考えている。