Belle II 実験における Bhabha散乱のトリガー条件の検討

奈良女子大学大学院 人間文化研究科 物理科学専攻 高エネルギー物理学研究室 福井 千尋

目次

≻ Belle II 実験

- > Bファクトリー実験とその高度化
- ▶ SuperKEKB加速器
- ➢ Belle Ⅱ 測定器

▶ 低マルチプリシティ事象とBhabha散乱

> γγ^{*}→π⁰事象

➢ Bhabha散乱

> 輻射補正とイベントジェネレーター

Bhabha散乱のトリガー条件

- ▶ Belle 実験でのトリガー
- Belle II 実験での改善の可能性
- > Bhabha識別条件の付加

Bファクトリー実験とその高度化

▶ B中間子を大量に生成し、その崩壊過程を研究

▶ 高エネルギー加速器研究機構(Belle実験)とSLAC国立加速器研究所ではB中間子の崩壊におけるCP対称性の破れを測定

→ 小林・益川のノーベル物理学賞にも決定的な貢献

▶ B⁰→ΦK⁰やB⁰→η'K⁰など稀崩壊過程におけるCP非保存の測定による新物理の探索 → 更なるルミノシティの向上が必要

▶ 様々な物理過程(終状態に発生する粒子数が少ない低マルチプリシ ティ事象など)も研究可能になる

SuperKEKB加速器

- ・電子7GeV・陽電子4GeVの非対 称エネルギー衝突加速器
- ▶ 新物理探索のため、ルミノシティ 向上(KEKB加速器で到達したルミ ノシティの約40倍)
- 既存の周長3kmのトンネル内の加 速器コンポーネントの置換により アップグレード
- ▶ 極低エミッタンスのビームを有限 角度で衝突させるナノビーム方式

低マルチプリシティ事象と Bhabha散乱

γγ^{*}→π⁰事象 (低マルチプリシティ事象の代表)

- ▶ 仮想光子とほぼ実光子の衝突によるπ⁰生成
- ▶ Transition Form Factor という非摂動論的QCDの最も基本的な量の一つ
- ▶ 終状態では電子(or 陽電子)一つとπ⁰(→γγ:多くは近接)一つが検出される
- > Bhabha散乱(電子・陽電子の弾性散乱)と識別が難しい

Bhabha散乱

- → 量子電磁気学(QED)に基づく

 = 既によくわかっている
- 測定器の較正やルミノシティ 測定に必要なだけ記録すれ ば十分
- 終状態が電子以外のフェルミ 粒子対であれば(i)のみ。
 Bhabha散乱は(ii)も寄与し、
 これが大きい

> O(α²)の反応

最低次の断面積 (k) ^{e-} (k') e⁺ (p)

Mandelstam変数

$$s \equiv (k+p)^2 = 4E^2$$
$$t \equiv (k-k')^2 = -2E^2(1-\cos\theta)$$
$$u \equiv (k-p')^2 = -2E^2(1+\cos\theta)$$

不変振幅の絶対値の二乗

(p')

$$\begin{split} |m|^2 &= 2e^4 \left(\frac{s^2 + u^2}{t^2} + \frac{2u^2}{ts} + \frac{u^2 + t^2}{s^2}\right) \\ &= 2e^4 \left\{\frac{4 + (1 + \cos\theta)^2}{(1 - \cos\theta)^2} - \frac{(1 + \cos\theta)^2}{1 - \cos\theta} + \frac{(1 + \cos\theta)^2 + (1 - \cos\theta)^2}{4}\right\} \end{split}$$

微分断面積

$$\frac{d\sigma}{d\Omega} = \frac{1}{64\pi^2 s} |m|^2$$

10

最低次の散乱断面積

<微分断面積>

輻射補正

Bhabha散乱のO(α³)補正項

このような補正項も考慮してBhabha散乱を生成する イベントジェネレーター(BHWIDEプログラム)を用いた

Bhabha散乱のトリガー条件

Bhabha 散乱の 電磁カロリメーターでの全検出エネルギー Edeptotal Edep 350 Entries 3654 Mean 9.49 RMS 1.473 300 250 200 BHWIDEジェネレーターで 散乱角19.7°<θ<160.3°(重心系) 150 100 50 12 2 10 8 4 6 14 Bhbaha散乱はECLで検出する エネルギー[GeV] エネルギーが大きい! 全検出エネルギーが (電子7GeV・陽電子4GeVの衝 低い事象もある 突実験)

Edet1,Edet2の分布

(電子7GeV・陽電子4GeVの衝突実験)

Edet1のθ₁依存, Edet2のθ₂依存

電磁カロリメーターにおけるトリガーセル(TC) (Cslカウンター 8,736 本)

4×4=16本のCslカウンターの束 = トリガーセル(TC)

▶ Belle / Belle II では全体で576個のTC

TC内の16本のカウンター検出エネル
 ギー和 > 0.1GeV を要求

衝突点(IP)

Belle実験でのBhabhaトリガー

TC θ ID

同一の θ (ビーム軸からのpolar angle) にあるTCの エネルギーを足し、F1~F3,C1~C12,B1~B2とする。

それらの組み合わせ18通りを考慮

trgbit	$\text{Combination}(\theta \text{ ID})$	Energy cut(GeV)
1	F1+F2+F3+B1+B2	5.0
2	F3+C12	3.0
3	F2+F3(+backward gap)	5.0
4	C1(+backward gap)	4.0
5	C1+C11+C12	5.0
6	C2+C11+C12	5.0
7	C1+C2+C11	5.0
8	C2+C10+C11	5.0
9	C2+C9+C10	5.0
10	C2+C3+C10	5.0
11	C2+C3+C9	5.0
12	C3+C4+C9	5.0
13	C3+C4+C8	5.0
14	C4+C5+C8	5.0
15	C5+C7+C8	5.0
16	C5+C6+C7	5.0
17	C11+C12(+forward gap)	3.0
18	B1(+forward gap)	3.0

Bhabha識別条件のパターン分布

trgbit	Combination(θ ID)	Energy $\operatorname{cut}(\operatorname{GeV})$
1	F1+F2+F3+B1+B2	5.0
2	F3+C12	3.0
3	F2+F3(+backward gap)	5.0
4	C1(+backward gap)	4.0
5	C1+C11+C12	5.0
6	C2+C11+C12	5.0
7	C1+C2+C11	5.0
8	C2+C10+C11	5.0
9	C2+C9+C10	5.0
10	C2+C3+C10	5.0
11	C2+C3+C9	5.0
12	C3+C4+C9	5.0
13	C3+C4+C8	5.0
14	C4+C5+C8	5.0
15	C5+C7+C8	5.0
16	C5+C6+C7	5.0
17	C11+C12(+forward gap)	3.0
18	B1(+forward gap)	3.0

検出効率97%

Bhabha識別条件のパターン分布

いい* い 0 10 000 イベント	trgbit
$\gamma\gamma \rightarrow \pi^{\circ}$ 10,000 $\gamma^{\circ} \sim \gamma^{\circ}$	1
	2
trgbit {trgbit>0}	3
Entries (4533)	4
Mean 7713 RMS 6.897	5
	6
	7
	8
	9
	10
	11
	12
	13
	14
	15
	16
トリカー余件の番号	17
	18
誤認率45%	

1	F1+F2+F3+B1+B2	5.0
2	F3+C12	3.0
3	F2+F3(+backward gap)	5.0
4	C1(+backward gap)	4.0
5	C1+C11+C12	5.0
6	C2+C11+C12	5.0
7	C1+C2+C11	5.0
8	C2+C10+C11	5.0
9	C2+C9+C10	5.0
10	C2+C3+C10	5.0
11	C2+C3+C9	5.0
12	C3+C4+C9	5.0
13	C3+C4+C8	5.0
14	C4+C5+C8	5.0
15	C5+C7+C8	5.0
16	C5+C6+C7	5.0
17	C11+C12(+forward gap)	3.0
18	B1(+forward gap)	3.0

Energy cut(GeV)

Combination(θ ID)

trgbit

Bhabha散乱と似てECLでとらえるエネルギーが非常に大きい

Bhabhaトリガーの検討

Bhabha
$$\mathfrak{H}$$
 rgbit {rgbit>0}
rgbit {rgbit} {rgbit}
rgbit {rgbit} {

Gapを考慮しているトリガー条件(パターン番号 =3,4,17,18)で識別されたものについて考える。

Ex) パターン番号 = 3

trgbit	$\text{Combination}(\theta \text{ ID})$	Energy $\operatorname{cut}(\operatorname{GeV})$
1	F1+F2+F3+B1+B2	5.0
2	F3+C12	3.0
3	F2+F3(+backward gap)	5.0
4	C1(+backward gap)	4.0
5	C1+C11+C12	5.0
6	C2+C11+C12	5.0
7	C1+C2+C11	5.0
8	C2+C10+C11	5.0
9	C2+C9+C10	5.0
10	C2+C3+C10	5.0
11	C2+C3+C9	5.0
12	C3+C4+C9	5.0
13	C3+C4+C8	5.0
14	C4+C5+C8	5.0
15	C5+C7+C8	5.0
16	C5+C6+C7	5.0
17	C11+C12(+forward gap)	3.0
18	B1(+forward gap)	3.0

Bhabha散乱の方位角の差(Δφ_e+)

Gapを考慮しているトリガー条件 (パターン番号3,4,17,18のどれか)で識別されたもの

 $\Delta \phi_{e} + = \phi_{TC} - \phi_{e} + \phi_{TC} - \phi_{TC} - \phi_{e} + \phi_{TC} - \phi_{TC}$

phtc1-phi2 {((theta1>0.2967&&theta1<2.618)&&(theta2>0.2967&&theta2<2.618))&&(trgbit==3||trgbit==4||trgbit==17||trgbit==18)}

Bhabha散乱の方位角の差(Δφ_e-)

 $\Delta \phi_{e} - = \phi_{TC} - \phi_{e} - \phi_{e}$

phtc1-phi1 {((theta1>0.2967&&theta1<2.618)&&(theta2>0.2967&&theta2<2.618))&&(trgblt==3||trgblt==4||trgblt==17||trgblt==18)}

γγ^{*}→π⁰過程(陽電子が大きく散乱した場合) の方位角の差(Δφ_e+)

 $\Delta \phi_{e} + = \phi_{TC} - \phi_{e} +$

(phtc1-phi2) {((heta2>0.2967&&heta2<2.618)&&(trgbit==3|[trgbit==4][trgbit==17][trgbit==18))&&(thc1>0.2&&thtc1<2.6&&thtc2>0.2&&thtc2>2.6]}

γγ^{*}→π⁰過程(電子が大きく散乱した場合) の方位角の差(Δφ_e-)

 $\Delta \phi_{e} - = \phi_{TC} - \phi_{e} - \phi_{e}$

(phtc1-phi1) {((theta1>0.2967&&theta1<2.618)&&(trgbit==3|(trgbit==4|(trgbit==17)|(trgbit==18))&&(thtc1>0.2&&thtc1<2.6&&thtc2>0.2&&thtc2<2.6)}

Bhabhaトリガー条件の追加

Belle実験でのBhabha識別トリガーにおいてGapを考慮している条件(パ ターン番号=3,4,17,18)で識別されたものについて以下の条件を追加

結果

Gapを考慮している条件(パターン番号=3,4,17,18)で識別されたものに 新たに方位角の差の条件を追加した。

➢ Bhabha散乱事象

→ 失われない

≻ γγ^{*}→π⁰事象 (全10,000事象)

 \rightarrow TC1の反対側にe⁻またはe⁺がある 479 events

これはBhabhaから見分けられない。 $\gamma\gamma^* \rightarrow \pi^0$ として4.8%のロス

まとめ

- Belle II 実験ではBelle 実験の約40倍のルミノシティを目標にし、高頻度の事象の記録を可能にする。
- 高ルミノシティの実験により、様々な物理過程もこれまでにない感度で研究の対象になる。この中には低マルチプリシティ事象が含まれる。
- ▶ 低マルチプリシティ事象の一つであるγγ^{*}→π⁰事象はBhabha散乱に誤認され やすい。→ 45%が誤認される
- > 今回検討した、TC1とe⁺ またはe⁻の方位角の差に関する条件の追加で $\gamma\gamma^* \rightarrow \pi^0$ 事象をBhabha散乱と誤認する確率が4.8%まで低減可能。
- 中央飛跡検出器と電磁カロリメーターのように複数の測定器コンポーネントの情報を組み合わせる高レベルトリガーの設定と運用が求められる。