

奈良女子大学大学院 人間文化研究科 物理科学専攻 高エネルギー物理学研究室 馳川 香菜実

- 1. Introduction
- 2. 実験装置 (KEKB加速器 Belle測定器)
- 3. 事象選別
- 4. $\tau^- \rightarrow \pi^- \pi^- \pi^+ \nu_{\tau}$ の不変質量分布
- 5. 角度分布と形状因子
- 6. まとめ

1. Introduction

て粒子

- 第3世代に属するレプトン
- 電子の質量の約3500倍 (M_r=1.77 GeV)
 質量が重い為、ハドロン崩壊が可能 *τ* 粒子のハドロン崩壊

・ハドロン状態を研究するのに理想的な実験室

1.始状態がレプトン 2.終状態のハドロンの数が少数

1prog 85.36% 3prong 15.0%

3.ハドロン系の質量が1~2GeV
興味深い領域
2つの側面
> Inclusiveな測定(崩壊モードの和)
⇒摂動論的QCDの適用が可能:
$$R_{\tau} = \frac{\Gamma(\tau \rightarrow \text{hadorons})}{\Gamma(\tau \rightarrow e^{-}\overline{\nu_{e}}\nu_{\tau})}$$

 $R_{\tau} = 3.058[1 + \frac{\alpha_{s}(m_{\tau})}{\pi} + 5.2\frac{\alpha_{s}(m_{\tau})^{2}}{\pi} + 26.4\frac{\alpha_{s}(m_{\tau})^{3}}{\pi} + \dots + n.p.t]$
 R_{τ} :強い相互作用の結合定数αs値を高い精度で決定
· 偶数個のπ : ベクター真空偏極項 < 0| $\overline{u}\gamma_{\mu}d|_{0>}$
· ストレンジを含む: $m_{s}, V_{us} < 0|s\gamma_{\mu}d|_{0>}$

➤ Exclusiveな測定(各モードの測定) ⇒ハドロンの共鳴状態(lowQ²のハドロン) 理論的には

Latticeの計算、カイラル摂動論、 ストリング理論(QCDと重力対応)等との関連が興味深 い

実験的には

t 粒子系はハドロンの2体、3体系のきれいな情報を 提供する。

→ハドロン形状因子

ハドロン形状因子(Form Factor)

ハドロン系の情報をすべて含む。

• τ →X ν_τ崩壊

	Xの状態	形状因子
1体	π、Κ	f π = 98MeV,fK:決まった数字
2体	π ⁻ π ⁰ 、Kπ ⁰	2つ F _v (Q ²),F _s (Q ²):Q ² (ハドロンの質量) ² の関数
3体	h⁻h⁻h⁺	$4\Im F_1(Q^2,s_1,s_2),F_2(Q^2,s_1,s_2),F_3(Q^2,s_1,s_2),F_4(Q^2,s_1,s_2)$

3つの変数の関数 $(\tau(l,s) \rightarrow \nu_{\tau}(l'+s') + h_1(q_1) + h_2(q_2) + h_3(q_3))$ $Q^2 : (q_1+q_2+q_3)^2 : (ハドロンの質量)^2$ $s_1 : (q_2+q_3)^2 : (サブシステムh_2,h_3の質量)^2$ $s_2 : (q_3+q_1)^2 : (サブシステムh_3,h_1の質量)^2$

3体系のハドロン形状因子の定義

4つの形状因子 F₁(Q²,s₁,s₂), F2(Q²,s₁,s₂):軸ベクター成分(3π→a₁(1270)) F₃(Q²,s₁,s₂):ベクター成分(存在が確認されていない) F₄(Q²,s₁,s₂):スカラー成分(存在が確認されていない)

〇3体:4個の形状因子が存在

〇各形状因子は複素数(振幅位相)を持つ

○形状因子を決めるには質量分布と、角度分布の測定が必要 ○3つの角度が存在(τの偏極なしの場合)

・一般に6次元(Q²,s₁,s₂,3つの角)の解析が必要

- ニュートリノの方向が観測できない
- τ の方向が多くの場合不明

⇒難しい測定

⇒3体の形状因子は、ほとんど決められていない。

(これまで少ない統計での $\tau^- \rightarrow \pi^- \pi^- \pi^+ \nu_{\tau}$ 崩壊の研究が一例あるのみ)

本研究ではBelle実験で収集した高統計データをもとに $\tau^- \rightarrow \pi^- \pi^- \pi^+ \nu_{\tau}$ 崩壊で

O3体崩壊でのハドロン形状因子の測定のための解析手 法を確立すること

これらの方法は将来的には、 $K \pi \pi$, $KK \pi$ 、KKKの解析に有効

形状因子を決定する基本関係式

 $\tau^- \rightarrow \pi^- \pi^- \pi^+ \nu_{\tau}$ の微分崩壊幅「より形状因子を測定できる。

Lx(Q²,γ,cosβ,cosθ): 既知の関数 ⇒Wx(Q²,s₁,s₂):ハドロン構造関数 G:フェルミ定数 cosθc:カビボ角

→ハドロン構造関数とは

•F₁,F₂,F₃,F₄と一意的な関係を持つ(関係式)

・一般にQ²,s₁,s₂の関数

・Wxは4×4=16個存在

決まったQ²,s₁,s₂のビンごとに崩壊角分布を測定すると、 構造関数Wxが測定でき、そこから形状因子Fiが決まる。 構造関数と構造因子の関係(1)

$$16@ \begin{cases} W_{A} = (x_{1}^{2} + x_{3}^{2}) |F_{1}|^{2} + (x_{2}^{2} + x_{3}^{2}) |F_{2}|^{2} 2(x_{1}x_{2} - x_{3}^{2}) \operatorname{Re}(F_{1} F_{2}^{*}) \\ W_{B} = x_{4}^{2} |F_{3}|^{2} \\ W_{C} = (x_{1}^{2} - x_{3}^{2}) |F_{1}|^{2} + (x_{2}^{2} - x_{3}^{2}) |F_{2}|^{2} 2(x_{1}x_{2} + x_{3}^{2}) \operatorname{Re}(F_{1} F_{2}^{*}) \\ W_{D} = 2[x_{1}x_{3} |F_{1}|^{2} - x_{2}x_{3} |F_{2}|^{2} + x_{3}(x_{2} - x_{1}) \operatorname{Re}(F_{1} F_{2}^{*})] \\ W_{E} = -2x_{3}(x_{1} + x_{2}) \operatorname{Im}(F_{1} F_{2}^{*}) \\ W_{F} = 2x_{4}[x_{1} \operatorname{Im}(F_{1} F_{3}^{*}) + x_{2} \operatorname{Im}(F_{2} F_{3}^{*})] \\ W_{H} = 2x_{3}x_{4}[\operatorname{Im}(F_{1} F_{3}^{*}) + x_{2} \operatorname{Re}(F_{2} F_{3}^{*})] \\ W_{H} = 2x_{3}x_{4}[\operatorname{Im}(F_{1} F_{3}^{*}) + \operatorname{Im}(F_{2} F_{3}^{*})] \\ W_{B}|dF_{3} \mathcal{O} \mathcal{A} \\ W_{S} = Q^{2} |F_{4}|^{2} \\ W_{S} = 2\sqrt{Q^{2}}[x_{1} \operatorname{Re}(F_{1} F_{4}^{*}) + x_{2} \operatorname{Re}(F_{2} F_{4}^{*})] \\ W_{SF} = -2\sqrt{Q^{2}}x_{4} \operatorname{Im}(F_{3} F_{4}^{*}) \\ X|dxQ^{2} \geq \cos \delta \mathcal{O} \\ \operatorname{Im} \mathfrak{M} \mathcal{O} \mathfrak{B} \mathfrak{M} \end{cases}$$

 $F_1 F_2$: 軸ベクター成分 F_3 :ベクター成分 F_4 :スカラー成分

Belle検出器

生成された粒子を検出す る為の複数の装置で構成

2. 実験装置

SVD:粒子崩壊点の測定 CDC:荷電粒子の飛跡や 運動量の測定

ACC: K[±]と^{π±}の識別

- TOF: 荷電粒子の飛行時 間を測定
- ECL:電子や光子の

エネルギー測定 KLM : K_L,µ粒子検出器

 $\tau^- \rightarrow \pi^- \pi^- \pi^+ \nu_{\tau}$ 事象選別 3.

$e^+e^- \rightarrow \tau^+ \tau^-$ 事象選別

Belle測定器で収集された全反応の中から τ 対生成を選びだすことが必要。 バックグラウンド・・・ B中間子対生成, μ 対生成, $e^+e^- \rightarrow qq$ 崩壊 **バーバー**散乱(e⁺e⁻→e⁺e⁻(γ)) 二光子過程 (e⁺e⁻→e⁺e⁻|⁺|⁻) =e. u見ている半球 信号サイド * e⁺e⁻の重心系で2つの半球に分け $\tau + \tau -$ それぞれの崩壊の区別を行う。 荷電飛跡 π 他の荷電飛跡と 90°以上離れている。 最も高い運動量を持つ。 事象軸 事象軸に垂直な面で、 事象軸

生成した粒子を2つの半球に分離し、 1半球毎に条件を課していく。

タッグサイド

$$\tau^{-}$$
→(3h)⁻ ν_{τ} 選別

h = π、K の荷電中間子

選別された r 対生成を用いて、

3個の荷電ハドロンに崩壊する事象を選別する。

 $\tau^{-} \rightarrow (3h)^{-} \nu_{\tau}$ 事象候補 信号サイドに、荷電飛跡が3本あるもの シグナルの他に * π^{0} を含む崩壊 * $\pi^{\pm}\pi^{0}$ 崩壊 * Ks π^{\pm} 崩壊

バックグラウンドを除く為の条件

→ π^{0} は99%の確率で2つの γ に崩壊する為。

これらの γ のエネルギーは、ECLカウンターでのエネルギー損失により測定可能。 1つの粒子に対して、反応したカウンター群をクラスターと呼ぶ。

1事象に1個以上のクラスターが存在する時の最大エネルギーを分布で確認。

クラスターのエネルギー分布

■ $\tau^- \rightarrow \pi^- \pi^0 \nu_{\tau}$ 崩壊事象の除去

含まれる原因 $\begin{pmatrix} \pi^0 \text{から崩壊した} \gamma \text{ が検出器の近くで電子対}(e^+e^-) 生成し、 その飛跡が荷電粒子と数えられる為。$

識別方法

荷電粒子が電子と仮定して M_e=0.51MeVとおき、 符号の異なる荷電粒子2つの 不変質量分布Me⁺e⁻を計算

→ e⁺e⁻はγによって生成して いるので、不変質量が小さくなる 為、シグナルと識別可能になる。

$$\tau^- \rightarrow \pi^- \pi^0 \nu_\tau$$
の
バックグラウンドが
0.1GeV以下に集中

条件 Me⁺e⁻ < 0.1 GeV を満たす事象は除去

$\tau^- \rightarrow K_s \pi^- \nu_\tau$ 崩壊事象の除去

含まれる原因 $K_s \rightarrow \pi^+ \pi^-$ に崩壊するため。

 τ^{-} →(3h)⁻ ν_{τ} と、 τ^{-} →K_s $\pi^{-}\nu_{\tau}$ 崩壊の区別に、K_sの特徴を使う。

 $\tau^- \rightarrow \pi^- \pi^- \pi^+ \nu_{\tau}$ 選別

π ±K±識別

以上の条件で選別されるハドロンには、π中間子とK中間子が存在。 3つのπを選ぶには、πとKの識別が必要

Belle検出器での識別によって与えられた荷電粒子ID P(π / K)を用いて選別を行う。

* π^{\pm} とIDされる確率 P(π/K) > 0.8 (Kらしい) 0 \longleftarrow 1 (π らしい)

 $\tau^{-} \rightarrow \pi^{-} \pi^{-} \pi^{+} \nu_{\tau} \sigma \begin{aligned} & \sigma \\ & \sigma \\ & \sigma \\ & \tau^{-} \rightarrow \pi^{-} \mathsf{K}^{-} \pi^{+} \nu_{\tau} \\ & \tau^{-} \rightarrow \pi^{-} \mathsf{K}^{-} \mathsf{K}^{+} \nu_{\tau} \sigma \\ & \sigma \\ & \tau^{-} \rightarrow \pi^{-} \mathsf{K}^{-} \mathsf{K}^{+} \nu_{\tau} \sigma \\ & \sigma \\$

4. $\tau^{-} \rightarrow (3\pi)^{-} \nu_{\tau}$ 不変質量分布

 $\pi^{-}\pi^{-}\pi^{+}$ 不変質量分布

青は信号、プロットはデータ

崩壊項目	崩壊項目の割合[%]
τ →(3h) ⁻ π ⁰ ν _τ (緑)	8.00
τ→Ksπ ⁻ ν _τ (黄)	0.52
$\tau \rightarrow \pi^{-} \pi^{0} \nu_{\tau}$ (青)	0.17
その他のバックグラウンド (ピンク)	0.79
バックグラウンド合計	9.49

・信号はa₁(1270)からの寄与を示している。

 $\tau^- \rightarrow \pi^- \pi^- \pi^+ \nu_\tau$ 崩壊

 $\pi^-\pi^+$ の不変質量分布

・ 770MeV付近 ρ(770)のピークが見える。

a₁→pπ 崩壊を示す。

0.7GeV以下の領域
 データとMCで差がある。

現在のMCで含まれている a₁共鳴のみ

a₁共鳴以外の存在の可能性

5.角度分布と形状因子

崩壊角分布(1)

cosθ分布

 $\cos \theta$: τ の静止系におけるハドロンの方向

・ τ の方向を実験的に決めるのは難しいが、 cos θ はハドロンのエネルギーEhから決めら れる。

$$\cos \theta = \frac{(2xm_{\tau}^{2} - m_{\tau}^{2} - Q^{2})}{(m_{\tau}^{2} - Q^{2})\sqrt{1 - 4m_{\tau}^{2}/s}}$$

cosθ分布

すべてのQ²binにおけるcosθ分布

cosβ,cosγ:ハドロンの静止系で定義 ・Z方向は3体系の方向 ・cosβ:3体でハドロン3体で作る 平面に垂直な方向(n_⊥)とZ方向の 内積 ・γ:は方位角

すべてのQ²binにおけるcosβ分布

cos²β-1の構造。J^P=1⁺からの寄与を示している。

cosγ分布

すべてのQ²binにおけるcosγ分布

角分布の詳しい解析

• 角分布を定量的に研究するために9個の角モーメント<m>を定義

$$< m >= \frac{3}{2(m_{z}^{2} - Q^{2})} \int L_{\mu\nu} H^{\mu\nu} m \frac{\cos \beta}{2} \frac{d \gamma}{2\pi} + \frac{2}{2\pi} +$$

モーメントを実験的に決めると、構造関数Wxが決まり、そこから構造因子F₁,F₂,F₃,F₄が求まる。

結果 (サブシステムの変数s1,s2について積分し、Q2の関数として求めた結果)

結果得られた角モーメントとそこから言えることを以下にまとめる。

角モーメント<1>

0次のモーメント<1>は(質量)²分布を示す。

1.5(GeV)²付近にピークを持つ大きな構造は a₁(1270)共鳴からの寄与である。 角モーメント<3(cos²β-1)/2>,<cos2γ>,<sin2γ>

3

3

角モーメント分布

・W_A,W_C,W_Dの寄与 ・軸ベクタ—(JP=1+)

F₁,F₂の項からの寄与を示す。 ・構造はa₁(1270)→ρπ崩壊の 振幅とその干渉の効果を示し ている。

角モーメント <m></m>	構造関数	構造因子
<1>	W _A W _B W _{SA}	$F_1 F_2 F_3 F_4$
<(3cos²β-1)/2>	W _A W _B	$F_1 F_2 F_3$
<cos2γ></cos2γ>	W _c	F ₁ F ₂
<sin2γ></sin2γ>	W _D	F ₁ F ₂

モーメント<cos β >,<sin β sin γ >,<sin β cos γ >

・W_E,W_G,W_I←F₃ベクター成分(J^P=1⁻)の 効果

・W_{SA},W_{SF},W_{SB}←F₄ スカラー成分(J^P=0) の効果

これらの分布は統計の範囲で0である。 よって、スカラー成分及びベクター成分の 寄与は少ないといえる。(<10%)

角モーメント <m></m>	構造関数	構造因子
<cosβ></cosβ>	$W_{E} W_{SF}$	F_1 F_2 F_3 F_4
<sinβsinγ></sinβsinγ>	$W_{G} W_{SA}$	$F_1 F_2 F_3 F_4$
<sinβcosγ></sinβcosγ>	W _I W _{SB}	$F_1 F_2 F_3 F_4$

7. まとめ

- ・ Belle/KEKB実験で収集した高統計の τ 粒子対生成事象を用いて、 $\tau^- \rightarrow \pi^- \pi^- \pi^+ \nu \tau$ 崩壊の崩壊角分布の解析を行い、ハドロン構造関 数を求めるのに必要な解析手法を確立した。
- ・ 得られた角度モーメントや構造関数には軸ベクトルの共鳴である a_1 (1270) から期待される強い構造が観測された。 干渉位相の解析が今後の課題である。 (例: $a_1 \rightarrow \rho \pi \geq a_1 \rightarrow \rho' \pi$ の干渉)
 - ベクター成分やスカラー成分の寄与は少ない(<10%)であることが分かった。

本解析では角度分布から構造関数、構造因子を決定する枠組みを構築した。 今後角度モーメントに対する検出効率の補正や、統計を増やしたより詳しい 3π系の解析を遂行し、形状因子F₁,F₂,F₃,F₄を決定することが課題である。 また、同様の手法をKππ,KKKπ,KKKの系にも適用することが可能であり、本 研究はこのような将来の研究の基礎になるものである。

BACK UP

CP非保存の効果

 τ^{-} →(3 π)⁻ ν_{τ} 崩壊はCP非保存の可能性が期待されている → ベクトル成分とスカラー成分の2つの過程がある為

> ベクトル成分(J^P=1⁺) スカラー成分(J^P=0⁻) a₁共鳴 未確認の共鳴?

これらの共鳴の振幅干渉が、CP非保存を強調する。 CP非保存の正確な測定には

両成分の精密な 共鳴の幅 共鳴の質量 のデータが必要。

今回は、これらの測定の第一段階として

• $\tau^- \rightarrow \pi^- \pi^- \pi^+ \nu_{\tau}$ の崩壊分岐比の高精度による測定

終状態 π⁻π⁻π⁺ 系の質量スペクトラムの研究

• a1共鳴以外の共鳴の存在の有無の確認 を目的に解析を行う。 ハドロニック崩壊

低エネルギー(1 GeV 付近)のハドロン状態の研究に理想的

* スペクトラル関数(真空期待値)の決定
 * 強い相互作用の結合定数(α_s)の決定

実験データによる

崩壊分岐比や不変質量など

を測定することで求めることができる。

→ 実験による高精度な解析結果が重要

$e^+e^- \rightarrow \tau^+ \tau^-$ 選別条件

- 荷電飛跡の本数が2~4本 全 r 崩壊事象の85%を選ぶことができる
- 全電荷が保存されていること。
- ・ 検出されないニュートリノによる、ミッシング質量(MM)とミッシング角 (θ_{miss})の情報を用いた条件。赤枠内を τ 対生成として選別。

運動量の保存から決まったミッシングの重心系における方向

$$\begin{split} W_{A} &= (x_{1}^{2} + x_{3}^{2}) |F_{1}|^{2} + (x_{2}^{2} + x_{3}^{2}) |F_{2}|^{2} 2(x_{1}x_{2} - x_{3}^{2}) \operatorname{Re}(F_{1} F_{2}^{*}) \\ W_{B} &= x_{4}^{2} |F_{3}|^{2} \\ W_{A} &= (x_{1}^{2} - x_{3}^{2}) |F_{1}|^{2} + (x_{2}^{2} - x_{3}^{2}) |F_{2}|^{2} 2(x_{1}x_{2} + x_{3}^{2}) \operatorname{Re}(F_{1} F_{2}^{*}) \\ W_{D} &= 2[x_{1}x_{3} |F_{1}|^{2} - x_{2}x_{3} |F_{2}|^{2} + x_{3}(x_{2} - x_{1}) \operatorname{Re}(F_{1}F_{2}^{*})] \\ W_{E} &= -2x_{3}(x_{1} + x_{2}) \operatorname{Im}(F_{1}F_{2}^{*}) \\ W_{F} &= 2x_{4}[x_{1} \operatorname{Im}(F_{1}F_{3}^{*}) + x_{2} \operatorname{Im}(F_{2}F_{3}^{*})] \\ W_{H} &= 2x_{3}x_{4}[\operatorname{Im}(F_{1}F_{3}^{*}) + \operatorname{Im}(F_{2}F_{3}^{*})] \\ W_{H} &= -2x_{3}x_{4}[\operatorname{Re}(F_{1}F_{3}^{*}) + \operatorname{Re}(F_{2}F_{3}^{*})] \\ \end{split}$$

$\tau^- \rightarrow \pi^- \pi^- \pi^+ \nu_{\tau}$ 崩壊の物理

軸ベクター崩壊の中で最も大きい崩壊幅を持つ。 3つのπ中間子が存在する可能な量子数 J^P=1⁺, J^P=0⁻

この崩壊において、これまでに観測されている共鳴

* a₁(1270)共鳴 J^P=1⁺ m_{a1} = 1.23 GeV Γ_{a1} = 0.25 ~0.60 GeV

* 可能な量子数である、J^P=0⁻の状態の共鳴は?? a₁以外の共鳴の存在の確認が課題

て ハドロン崩壊実験の状況

	Finale state	Scalar F4	Vector F3	Axial vector F1,F2
JP		0-	1-	1+
1prong	π	π		
	к	K		
2prong	ππ	∆ (Iso spin)	ρρ'ρ''	×
	Kπ	?	K*	×
3prong	πππ	?	∆ (Iso spin)	a1(1270)
	Κππ	?	? (K*π	? vs K <i>p</i>)
	ΚΚ π	?	? (Φπ	? vs KK*)
	ККК (фК)		(ФК)	

38

3体系での構造因子

一般的に、ハドロンの3体系は4つの因子によって式化される。

$$\begin{split} J^{\mu}(q_{1},q_{2},q_{3}) &= V_{1}^{\mu}F_{1} + V_{2}^{\mu}F_{2} + V_{3}^{\mu}F_{3} + V_{4}^{\mu}F_{4} \\ &= \langle h^{-}h^{-}h^{+} \mid \mathcal{V}_{\mu} - A_{\mu} \mid 0 > \\ &= [(p_{1} - p_{3})F_{1} + (p_{2} - p_{3})F_{2}]] J^{P} = 1 + \\ &+ i \, \varepsilon^{\mu \, \alpha \, \beta \, \gamma} p_{1\alpha} \, p_{2\beta} \, p_{3\gamma} \, F_{3}] J^{P} = 1 - \\ &+ i \, \varepsilon^{\mu \, \alpha \, \beta \, \gamma} p_{1\alpha} \, p_{2\beta} \, p_{3\gamma} \, F_{3}] J^{P} = 1 - \\ &+ Q^{\mu} F_{4}] J^{P} = 0 \end{split}$$

F3と 発見

39

h1

h2 h3

$$d\Gamma(\tau \to 3h) = \frac{G^2}{4m_{\tau}} (g_{\nu}^2 + g_A^2) \cos^2 \theta_C \{ \sum_X \overline{L}_X W_X \}$$
$$\times \frac{1}{(2\pi)^5} \frac{1}{64} \frac{(m_{\tau}^2 - Q^2)^2}{m_{\tau}^2} \frac{dQ^2}{Q^2} ds_1 ds_2 \frac{d\alpha}{2\pi} \frac{d\gamma}{2\pi} \frac{d\cos\beta}{2} \frac{d\cos\beta}{2} \frac{d\cos\beta}{2}$$

4 angles : 後に議論 $Q^2 = (q1+q2+q3)^2$ $S_1 = (q2+q3)^2$ $S_2 = (q3+q1)^2$ ここでqiは静止系ハドロンの運動量

構造関数

- 構造因子Fi (構造関数Wx)はハドロン系のTの崩壊で十分な情報を持つ。
- 一般的にハドロンの3体系では、
 4個の構造因子と16個の構造関数をもつ。
- Fi,WxはQ²,s₁,s₂の関数である。
 →角度分布の測定は非常に重要である。
 →単純にw_xは次のように表わされる。
 wx(Q²)=∫Wx(Q²,s₁,s₂)ds₁,ds₂

H	$I^{\mu} \rightarrow$		
$H^{\nu^*} \downarrow$	$J^{P} = 1^{+}$	$J^{P} = 1^{-}$	$J^{P} = 0$
$J^P = 1^+$	WA WC WD WE		
$J^P = 1^-$	Wf Wg Wh Wi	Wв	
$J^{P} = 0$	WSB WSC WSD WSG	WSF WSG	WSA
		h1	h2
		h1h2h3	

observe

MC

 $\cos\beta$ の分布では $\cos^2\beta$ -1の構造が見られる。

構造関数Wxに関係する構造因子Fi(1)

構造関数	構造因子
WA	F1 F2
WB	F3
WC	F1 F2
WD	F1 F2
WE	F1 F2
WF	F1 F2 F3
WG	F1 F2 F3
WH	F1 F2 F3
WI	F1 F2 F3
WSA	F4
WSB	F1 F2 F4
WSF	F3 F4

F1 F2: 軸ベクター成分 F3:ベクター成分 F4:スカラー成分 44

モーメント<m>に関係する構造関数Wx、構造因子Fi

角度モーメント <m></m>	構造関数	構造因子
<1>	W _A W _B W _{SA}	$F_1 F_2 F_3 F_4$
<(3cos²β-1)/2>	W _A W _B	$F_1 F_2 F_3$
<cos2γ></cos2γ>	W _c	$F_1 F_2$
<sin2γ></sin2γ>	W _D	$F_1 F_2$
<cosβ></cosβ>	W _E W _{SF}	$F_1 F_2 F_3 F_4$
<sin2βcosγ></sin2βcosγ>	W _F	$F_1 F_2 F_3$
<sinβsinγ></sinβsinγ>	W _G W _{SA}	$F_1 F_2 F_3 F_4$
<sin2βsinγ></sin2βsinγ>	W _H	$F_1 F_2 F_3$
<sinβcosγ></sinβcosγ>	W _I W _{SB}	$F_1 F_2 F_3 F_4$

F1 F2: 軸ベクター成分 F3:ベクター成分 F4:スカラー成分

軸ベクター成分の寄与

W_A,W_C,W_Dは F₁,F₂(a1共鳴)からの 寄与とその間の干渉 を示している。

構造関数	構造因子
W _A	$F_1 F_2$
W _c	$F_1 F_2$
W _D	$F_1 F_2$

ベクター成分の寄与

角度モーメント<m>

求めた角度分布より、モーメント<m>が定義される。

$$< m >= \frac{3}{2(m_{\tau}^{2} - Q^{2})} \int L_{\mu\nu} H^{\mu\nu} m \frac{\cos \beta}{2} \frac{d\gamma}{2\pi}$$

角度モーメントと構造関数の関係

< 1 >	=	$(2 K_{1} + 3 K_{2})(W_{A} + W_{2})$	$(B_B) + 3 K_2 W_{SA}$
$< 3(\cos^{-2}\beta - 1)/2$	> =	$\frac{1}{5} \overline{K_{1}} (W_{A} - 2W_{B})$	
$< \cos 2\gamma >$	= -	$\frac{1}{2} \overline{K_1} W_c$	$K_1 = 1 - m_{\tau}^2 / Q^2$
$< \sin 2\gamma >$	=	$\frac{1}{2}\overline{K_1}W_D$	$K_2 = m_\tau^2 / Q^2$
$<\cos \beta >$	=	$\overline{K}_{3}W_{E} - \overline{K}_{2}W_{SF}$	$\overline{K}_1 = K_1 (3\cos^2 \Psi - 1) / 2$
$< \sin 2\beta \cos \gamma >$	=	$\frac{2}{5}\overline{K_1}W_F$	$\overline{K}_2 = K_2 \cos \Psi$
$< \sin \beta \sin \gamma >$	= -	$\overline{K}_{3}W_{G} - \overline{K}_{2}W_{SA}$	$\overline{K}_3 = \cos \Psi$
$< \sin 2\beta \sin \gamma >$	= -	$\frac{2}{5}\overline{K_1}W_H$	
$< \sin \beta \cos \gamma >$	= -	$\overline{K}_{3}W_{I} + \overline{K}_{2}W_{SB}$	48

Fiは複素数をもつ

 $|F_1 + F_2 + F_3 + F_4|^2$ $=(F_1+F_2+F_3+F_4)(F_1*+F_2*+F_3*+F_4*)$ $=F_1F_1^*+F_1F_2^*+F_1F_3^*+F_1F_4^*$ $+ F_{2}F_{1}^{*}+F_{2}F_{2}^{*}+F_{2}F_{3}^{*}+F_{2}F_{4}^{*}$ 16個 $+ F_3F_1*+F_3F_2*+F_3F_3*+F_3F_4*$ $+ F_4F_1^* + F_4F_2^* + F_4F_3^* + F_4F_4^*$