Measurement of spectral function in the decay $\tau^- \rightarrow \pi^- \pi^0 v_{\tau}$

Yukiko Hirano (Nara Women's Uni. , High Energy Physics Lab.) For the Belle collaboration

Outline

- 1. Motivation
 - ~ Muon Anomalous Magnetic Moment $g_{\mu}-2$ ~
- 2. Event selection
- 3. $\pi\pi^0$ mass spectrum (unfolding)
- 4. Evaluation of $a_{\mu}^{\pi\pi}$
- 5. result

Motivation ~ Muon Anomalous Magnetic Moment (g_{μ} - 2) ~

Muon Anomalous Magnetic Moment: $a_{\mu} = \frac{g_{\mu} - 2}{2}$

The prediction of Standard Model

$$a_{\mu}^{SM} = a_{\mu}^{QED} + a_{\mu}^{EW} + a_{\mu}^{had} + a_{\mu}^{had,LBL}$$

hadron

largest error from Hadron vacuum polarization

 a_{μ}^{had} and $\tau \rightarrow \pi \pi^0 \nu_{\tau}$ decay

the contribution of hadrom Vacuum polarization (a_{μ}^{had})

difficult to obtain from first principle !

obtained from Experimental Data.

$a_{\mu}^{\pi\pi}$ and $\tau \rightarrow \pi\pi^{0} v_{\tau}$ decay

Hadron Vacuum polarization term from 2π system ($a_{\mu}^{\pi\pi}$)

$$a_{\mu}^{\pi\pi} = \frac{\alpha_{em}^{2}(0)}{\pi} \int_{4M_{\pi}^{2}}^{\infty} ds \frac{K(s)}{s} v^{\pi\pi^{0}}(s) \qquad s = M_{\pi\pi}^{2} \qquad \text{K(s) is known function.}$$
Spectral function
$$v^{\pi\pi^{0}}(s) = \frac{M_{\tau}^{2}}{6\pi |V_{ud}|^{2} S_{EW}} \left[\left(1 - \frac{s}{M_{\tau}^{2}}\right) \left(1 + \frac{2s}{M_{\tau}^{2}}\right) \right]^{-1} \frac{B_{\pi\pi^{0}}}{B_{e}} \frac{1}{N_{\pi\pi^{0}}} \frac{dN_{\pi\pi^{0}}}{ds}$$

$$\pi\pi^{0} \text{ mass square spectrum}$$

$$\frac{1}{N_{\pi\pi^0}}\frac{dN_{\pi\pi^0}}{ds}$$
 is measured in this experiment.

Present status ; Muon Anomalous Magnetic Moment ($g_{\mu}-2$)

- > Exp. ••• measured by BNL (g-2) experiment. $a_{\mu}^{exp} = (11659203 \pm 8) \times 10^{-10} (2002.9)$
- > Theoretical prediction · · · new e^+e^- data (CMD-2) and τ data (ALEPH) (2003.1)

•
$$e^+e^-$$
 base
 $a_{\mu}^{SM} = (11659169.3 \pm 7.0(had) \pm 3.5(LBL) \pm 0.4(QED + EW)) \times 10^{-10}$
 $a_{\mu}^{exp} - a_{\mu}^{SM} = (33.7 \pm 11.2) \times 10^{-10} \implies \text{difference by } 3.0\sigma$

•
$$\tau$$
 base
 $a_{\mu}^{SM} = (11659193.6 \pm 5.9(had) \pm 3.5(LBL) \pm 0.4(QED + EW)) \times 10^{-10}$
 $a_{\mu}^{exp} - a_{\mu}^{SM} = (9.4 \pm 10.5) \times 10^{-10} \implies \text{agree within } 0.9\sigma$

Hadron Vacuum Polarization. term is different between e^+e^- and τ base predictions. • Cross check is important !

Event selection

Data : $4.43 fb^{-1}$ accumulated from 2000.10 to 2000.12 at *Belle*.

(corresponding to 4.0×10^6 $\tau^+ \tau^-$ production.)

one hemisphere

the other hemisphere

 $e^+e^- \rightarrow \tau^+\tau^-$ event selection

 $e^+e^- \rightarrow \tau^+\tau^-$ event selection criteria

```
•Number of charged tracks: 2 or 4
```

```
•All charge ( \Delta Q ) = 0
```

```
•event vertex position : |V_z| < 2.5 cm , |V_r| < 0.5 cm
```

•Separate the event into 2 hemisphere by the event axis.

```
•Event axis direction : 35^{\circ} < \theta^* < 145^{\circ}
```

- Back Ground rejection (next slide)
- Physics trigger

$e^+e^- \rightarrow \tau^+\tau^-$ event selection (Back ground rejection)

•Bhabha, $e^+e^- \rightarrow \mu^+\mu^-(\gamma)$ and two photon rejection •<u>Missing mass</u> and Missing angle cut (<u>MM</u> v.s. θ_{miss} plot)

•Hadron($e^+e^- \rightarrow q\overline{q}$) rejection

• Reject high-multiplicity event $(X_{part} \equiv (n_{track} + n_{\gamma})_{one} \times (n_{track} + n_{\gamma})_{other} \le 25)$

about 1,300,000 $e^+e^- \rightarrow \tau^+\tau^-$ events are remained.

$\tau \rightarrow \pi \pi^0 \nu_{\tau}$ Event selection

 $\tau \rightarrow \pi \pi^{0} v_{\tau}$ selection criteria

•one charged track in hemisphere.
 •one π⁰ in the hemisphere.
 gamma condition : gamma-like shower shape

: $E_{\gamma} > 0.08_{\text{GeV}}$

veto the additional gamma

(with high momentum (more than 200 MeV/c))

* We do $\tau \rightarrow \pi \pi^0 v_{\tau}$ analysis each hemispheres.

$\pi\pi^{0}$ mass spectraum

Unfolding

Acceptance and bin-by-bin migration effects are corrected

via Singular-Value-Decomposition method.

Acceptance include both the tau-pair and pipi0 selection.

Mass square resolution : 0.03 GeV²

2003.3.28

Unfolded mass spectrum

Red line :

Breit Wigner fitting function (ρ and ρ' are included.)

Breit Wigner fitting form

$$\frac{dN}{ds} = A \left(1 - \frac{s}{M_{\tau}^{2}} \right)^{2} \left(1 + \frac{2s}{M_{\tau}^{2}} \right) \cdot v(s)$$

$$v(s) = \frac{1}{12} \left| F_{\pi}(s) \right|^{2} \beta_{\pi}^{3}$$

$$F_{\pi}(s) = \frac{1}{1 + \beta e^{i\phi}} \left(\frac{BW_{\rho}}{M_{\rho}} + \beta e^{i\phi} \cdot \frac{BW_{\rho}}{M_{\rho}} \right)$$

$$F_{\pi}(s) = \frac{1}{1 + \beta e^{i\phi}} \left(\frac{BW_{\rho}}{M_{\rho}} + \beta e^{i\phi} \cdot \frac{BW_{\rho}}{M_{\rho}} \right)$$

$$F_{\pi}(s) = \frac{M_{\rho}^{2} + d \cdot \Gamma_{\rho} \cdot M_{\rho}}{(M_{\rho}^{2} - s) + f(s) - i\sqrt{s} \cdot \Gamma_{\rho}(s)}$$

Gounaris and Sakurai (G&S) Model

GS model is known that it can fit wilder mass region that the commonly used BW.

fit result and compare with previous Experiments

Fit	Belle	CLEO	ALEPH
Parameter			
$M_{ ho (MeV)}$	$773.9{\scriptstyle\pm0.4}$	$775.3_{\pm 0.5}$	$7764_{\pm 09}$
$\Gamma_{ ho}$ (MeV)	152.4 ± 0.7	150.5 ± 1.1	1505 ± 1.6
$M_{ ho' (MeV)}$	$1398 \pm {\scriptstyle 21}$	1365 ± 7	1400 ± 16
$\Gamma_{ ho'}$ (MeV)	450 ± 40	$356 \pm {\scriptstyle 26}$	\equiv 310 (fixed)
β	0.085 ± 0.010	-0.108 ± 0.007	-0.077 ± 0.008
(degree)	181.0 ± 6.2	$\equiv 180.0$ (fixed)	$\equiv 180.0$ (fixed
$\chi^2/d.o.f$	35.6/42	26.8/24	54/65

• ρ parameters : good agreement with previous Exp.

• ρ' parameters : *Belle* results are most precise.

2003.3.28

$$\begin{aligned} u^{\pi\pi} &= \frac{\alpha_{em}^2(0)}{\pi} \int_{4M_{\pi}^2}^{\infty} ds \frac{K(s)}{s} v^{\pi\pi^0}(s) \\ v^{\pi\pi^0}(s) &= \frac{M_{\tau}^2}{6\pi |V_{ud}|^2 S_{EW}} \left[\left(1 - \frac{s}{M_{\tau}^2} \right) \left(1 + \frac{2s}{M_{\tau}^2} \right) \right]^{-1} \frac{B_{\pi\pi^0}}{B_e} \frac{1}{N_{\pi\pi^0}} \frac{dN_{\pi\pi^0}}{ds} \\ \begin{cases} M_{\tau} \text{ (tau mass)} \\ S_{EW} \text{ (Electro-Weak correction factor)} \\ |V_{ud}| \text{ (element of CKM matrix)} \\ B_e \text{ (Br. of } \tau \to e\bar{v}, v) \\ B_{\pi\pi^0} \text{ (Br. of } \tau \to \pi\pi^0 v) \end{cases} \end{aligned}$$

Systematic error ()

External systematics ~Normalization factors~

source	value	$\Delta a_{\mu}^{\pi\pi}_{(10^{-10})}$
$S_{_{EW}}$	1.0199±0.0006	±0.32
$V_{_{ud}}$	0.9734 ± 0.0008	±0.42
B_{e}	(17.84 ± 0.06) %	±1.82
$B_{_{\pi\pi^0}}$	(25.41±0.11) %	±2.30
total		±2.98

Largest error from
$$B_{\pi\pi^o}$$

Systematic error (

Internal systematics

sourc	e	$\Delta a_{\mu}^{\pi\pi}$ (10 ⁻¹⁰)	comment
B.G. estimation			B.G. fraction
non- $ au$ BG	hadron	± 0.05	$0.14 \pm 0.01~\%$
	2 photon	±0.4	$2.3 \pm 0.06 ~\%$
Feed across	$h \ge 2\pi^0 v$	±0.3	$5.43 \pm 0.08 \hspace{0.1cm} \%$
BG	$K^{-}\pi^{0}$	±1.2	1.74 ± 0.09 %
Energy scale		±0.1	$\Delta E / E = \pm 0.2\% \ (\pi^0)$
efficiency			
Minimum γ	energy	±1.8	80MeV – 200MeV
non- π^0 BG		±0.8	Use π^0 side-band
total		±2.36	

1.Non-auBG.

·estimated by B.G. MC.

- control data sample are used for the calibration.
- 2. Feed-across
 - $\cdot ~1\sigma$ of measured Br.
- 3. Energy scale
 - ·uncertainty estimated from

 π^0 mass peak.

- 4. π^0 Selection
 - ·estimated from the uncertainty

of side-band.

5. minimum γ energy

2003.3.28

 $a_{\mu}^{\pi\pi} = (541.3 \pm 2.0(stat.) \pm 2.36(sys.) \pm 2.98(sys. ext.)) \times 10^{-10}$ Result of $a_{\mu}^{\pi\pi}$ is ...

Integrated mass sqr. region : $4m_{\pi}^{2}$ to $(1.8)^{2}GeV^{2}$

cf. ALEPH $a_{\prime\prime}^{\pi\pi} = (533.86 \pm 3.57(stat) \pm 2.36(sys)) \times 10^{-10}$ (τ base) Integrated mass sqr. region : $4m_{\pi}^{2}$ to $(1.8)^{2}GeV^{2}$ $\frac{\left(a_{\mu}^{Belle} - a_{\mu}^{ALEPH}\right)}{\sqrt{\sigma_{Relle}^2 - \sigma_{ALEPH}^2}} = \frac{7.4}{4.7} = 1.6$ Consistent within error excluding common error

Backup slide

Flow of this analysis

2.Event selection

$e^+e^- \rightarrow \tau^+\tau^-$ event selection

$e^+e^- \rightarrow \tau^+\tau^-$ event selection (Back ground rejection)

•Bhabha, $e^+e^- \rightarrow \mu^+\mu^-(\gamma)$ and two photon rejection

•clean Bhabha and mumu event rejection : $\sum |P| \le 9.0_{\text{GeV/c}}$, $\sum |E| \le 9.0_{\text{GeV/c}}$

Missing mass and Missing angle cut

•Hadron($e^+e^- \rightarrow q\bar{q}$) rejection •Low-multiplicity event : $X_{part} \equiv (n_{track} + n_{\gamma})_{one} \times (n_{track} + n_{\gamma})_{other} \le 25$

Then ,we obtained about 1,300,000 event of $e^+e^- \rightarrow \tau^+\tau^-$. 2003.3.28 JPS 2003 in Sendai

Missing mass VS. Missing angle

Time dependence

 τ data at *Belle* detector

JPS 2003 in Sendai

Time dependence

Momentum of π^0 and π^{\pm}

Good agreement between Data and MC.

Fitting result of Breit Wigner model

K&S model

G&S model

2003.3.28

Fitting result

	K&S	K&S	G&S	G&S
	$\rho + \rho' \ (\beta \text{ is real})$	$\rho + \rho' (\beta, \phi \text{ used})$	$\rho + \rho'$ (β is real)	$\rho + \rho' \ (\beta, \phi \text{ used})$
$M_{ ho}$	$773.25{\scriptstyle\pm0.36}$	773.07±0.39	773.94±0.35	773.9 ± 0.37
$\Gamma_{\! ho}$	150.58 ± 0.66	$150.76 {\scriptstyle \pm 0.68}$	$152.37 {\scriptstyle \pm 0.69}$	$152.4{\scriptstyle\pm0.71}$
M_{ρ}	1 397.8 ±66	$1421.7{\scriptstyle\pm18.9}$	$1395.0{\scriptstyle\pm6.3}$	1398.2 ± 20.9
Γ_{ρ}	514.77±29.6	$542.28{\scriptstyle\pm41.5}$	$445.9{\scriptstyle\pm28.5}$	450.4±39.9
β	-0.120 ± 0.005	0.14 ± 0.020	-0.084 ± 0.004	0.085 ± 0.010
ϕ		$188.4{\scriptstyle\pm9.05}$		180.0±6.17
$\frac{2}{\sqrt{dof}}$	40.9/43 =	38.8/42 =	35.6/43 =	35.6/42 =
Λ []	0.93	0.93	0.83	0.85

JPS 2003 in Sendai

Unfolding of invariant mass

About Unfolding

The observed distribution includes contribution of detector acceptance ,and smeared .

We can obtain true distribution by using Unfolding.

Unfolding is carried out by

Singular Value Decomposition (SVD) method.

method a la ALEPH, A.Höcker, V.Karvelishvili, N.I.M. 372(1996)469

2003.3.28

Spectral function

JPS 2003 in Sendai

Systematic detail 1

(1) BG estimation (two photon)

(2) BG estimation (hadron)

Hadron BG contribution also estimated by Data using control sample.

$$X_{part} \equiv (n_{track} + n_{\gamma})_{one} \times (n_{track} + n_{\gamma})_{other} > 25 \qquad \text{for hadron selection} \\ X_{part} \equiv (n_{track} + n_{\gamma})_{one} \times (n_{track} + n_{\gamma})_{other} \le 25 \qquad \text{for } \tau \text{ selection}$$

2003.3.28

Systematic detail2

(3) Energy scale

2% uncertainty of π^0 mass spectrum is assumed.

(4) Gamma energy threshold

(5) π^0 side-band subtraction

Use control sample of $\pi^{\scriptscriptstyle 0}$ side-band .

Hadron Vacuum polarization and e^+e^- Data

The term of hadron vacuum polarization

 $e^+e^- \rightarrow hadron$

au semi-Leptonic dacayc decay

Iso-spin Conserve of Vectro Current

We can treat au data as same condition as e^+e^- data.